Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: A state-of-the-art review

2021 ◽  
Vol 112 ◽  
pp. 651-666
Author(s):  
Santosh Kumar ◽  
Indra Bhusan Basumatary ◽  
Hemanth P.K. Sudhani ◽  
Vivek K. Bajpai ◽  
Lei Chen ◽  
...  
2020 ◽  
Vol 21 (11) ◽  
pp. 1129-1137 ◽  
Author(s):  
Somayeh Mirsadeghi ◽  
Masoumeh F. Koudehi ◽  
Hamid R. Rajabi ◽  
Seied M. Pourmortazavi

Background: Herein, we report the biosynthesis procedure to prepare silver nanoparticles as reduction and capping agents with the aqueous plant extract of Perovskia abrotanoides. Methods: The therapeutic application of silver nanoparticles entirely depends on the size and shape of the nanoparticles therefore, their control during the synthesis procedure is so important. The effects of synthesis factors, for example, silver ion concentration, the mass of plant extract, reaction time and extraction temperature, on the size of silver particles were considered and optimized. Several analytical methods were used for the characterization of silver NPs including FT-IR and UV–Vis spectrophotometer, XRD and SEM. Results: The results showed that the mean size of the silver particles was about 51 nm. Moreover, the antibacterial properties of biosynthesized silver NPs were investigated by the minimum inhibitory concentration, minimum bactericidal concentration, and Well-diffusion tests. The minimum inhibitory concentration/ minimum bactericidal concentration values of silver NPs and aqueous plant extract versus Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (E. coli) were 3.03/0.00, 1.20/0.01, 3.06/0.00, 0.98/1.04, 1.00/0.05 and 1.30/0.03 (mg/mL), respectively. Conclusion: The antimicrobial activity study displayed that the synthesized silver nanoparticles by plant extract have better antimicrobial properties compared to aqueous plant extract of Perovskia abrotanoides.


2015 ◽  
Vol 70 ◽  
pp. 356-373 ◽  
Author(s):  
Ramachandran Rajan ◽  
Krishnaraj Chandran ◽  
Stacey L. Harper ◽  
Soon-Il Yun ◽  
P. Thangavel Kalaichelvan

Author(s):  
Susana Guzmán‐Puyol ◽  
Antonio Heredia ◽  
José A. Heredia‐Guerrero ◽  
José J. Benítez

2020 ◽  
Vol 11 (3) ◽  
pp. 66
Author(s):  
Umar M. Badeggi ◽  
Jelili A. Badmus ◽  
Subelia S. Botha ◽  
Enas Ismail ◽  
Jeanine L. Marnewick ◽  
...  

In this study, procyanidin dimers and Leucosidea sericea total extract (LSTE) were employed in the synthesis of silver nanoparticles (AgNPs) and characterized by ultraviolet-visible (UV-Visible) spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. AgNPs of about 2–7 nm were obtained. DLS and stability evaluations confirmed that the AgNPs/procyanidins conjugates were stable. The formed nanoparticles exhibited good inhibitory activities against the two enzymes studied. The IC50 values against the amylase enzyme were 14.92 ± 1.0, 13.24 ± 0.2, and 19.13 ± 0.8 µg/mL for AgNPs coordinated with LSTE, F1, and F2, respectively. The corresponding values for the glucosidase enzyme were 21.48 ± 0.9, 18.76 ± 1.0, and 8.75 ± 0.7 µg/mL. The antioxidant activities were comparable to those of the intact fractions. The AgNPs also demonstrated bacterial inhibitory activities against six bacterial species. While the minimum inhibitory concentrations (MIC) of F1-AgNPs against Pseudomonas aeruginosa and Staphylococcus aureus were 31.25 and 15.63 µg/mL respectively, those of LSTE-AgNPs and F2-AgNPs against these organisms were both 62.50 µg/mL. The F1-AgNPs demonstrated a better bactericidal effect and may be useful in food packaging. This research also showed the involvement of the procyanidins as reducing and capping agents in the formation of stable AgNPs with potential biological applications.


2017 ◽  
Vol 6 (5) ◽  
Author(s):  
Zahra Abbasi ◽  
Sholeh Feizi ◽  
Elham Taghipour ◽  
Parinaz Ghadam

AbstractSilver nanoparticles (AgNPs) have widespread applications. Recently, the synthesis of NPs using plant extract has attracted much attention. In this study, with an easy and rapid process at room temperature, AgNPs were produced by the aqueous extract of dried


Author(s):  
Elumalai Kowsalya ◽  
Kithiyon MosaChristas ◽  
Pannerselvam Balashanmugam ◽  
Veerasamy Manivasagan ◽  
Thiyagarajan Devasena ◽  
...  

2014 ◽  
Vol 14 (7) ◽  
pp. 5512-5517 ◽  
Author(s):  
Maria C. Siqueira ◽  
Gustavo F. Coelho ◽  
Marcia R. de Moura ◽  
Joana D. Bresolin ◽  
Silviane Z. Hubinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document