Evolutionary dynamics of transposable elements in a small RNA world

2011 ◽  
Vol 27 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Justin P. Blumenstiel
2021 ◽  
Author(s):  
Jaemyung Choi ◽  
David Bruce Lyons ◽  
Daniel Zilberman

Flowering plants utilize small RNA molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically required for small RNA biogenesis, and without H1 small RNA production quantitatively expands to non-CG methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the small RNA-generating branch of RdDM from non-CG methylated heterochromatin.


2019 ◽  
Author(s):  
Michelle C. Stitzer ◽  
Sarah N. Anderson ◽  
Nathan M. Springer ◽  
Jeffrey Ross-Ibarra

Transposable elements (TEs) constitute the majority of flowering plant DNA, reflecting their tremendous success in subverting, avoiding, and surviving the defenses of their host genomes to ensure their selfish replication. More than 85% of the sequence of the maize genome can be ascribed to past transposition, providing a major contribution to the structure of the genome. Evidence from individual loci has informed our understanding of how transposition has shaped the genome, and a number of individual TE insertions have been causally linked to dramatic phenotypic changes. But genome-wide analyses in maize and other taxa have frequently represented TEs as a relatively homogeneous class of fragmentary relics of past transposition, obscuring their evolutionary history and interaction with their host genome. Using an updated annotation of structurally intact TEs in the maize reference genome, we investigate the family-level ecological and evolutionary dynamics of TEs in maize. Integrating a variety of data, from descriptors of individual TEs like coding capacity, expression, and methylation, as well as similar features of the sequence they inserted into, we model the relationship between these attributes of the genomic environment and the survival of TE copies and families. Our analyses reveal a diversity of ecological strategies of TE families, each representing the evolution of a distinct ecological niche allowing survival of the TE family. In contrast to the wholesale relegation of all TEs to a single category of junk DNA, these differences generate a rich ecology of the genome, suggesting families of TEs that coexist in time and space compete and cooperate with each other. We conclude that while the impact of transposition is highly family- and context-dependent, a family-level understanding of the ecology of TEs in the genome can refine our ability to predict the role of TEs in generating genetic and phenotypic diversity.‘Lumping our beautiful collection of transposons into a single category is a crime’-Michael R. Freeling, Mar. 10, 2017


2021 ◽  
Author(s):  
Juan Manuel Crescente ◽  
Diego Zavallo ◽  
Mariana del Vas ◽  
Sebastian Asurmendi ◽  
Marcelo Helguera ◽  
...  

Abstract Plant microRNAs (miRNAs) are a class of small non-coding RNAs that are 20–24 nucleotides length and can repress gene expression at post-transcriptional levels by target degradation or translational repression. There is increasing evidence that some microRNAs can be derived from a group of non-autonomous class II transposable elements called Miniature Inverted-repeat Transposable Elements (MITEs) in plants. We used public small RNA, degradome libraries and the common wheat (Triticum aestivum) genome to screen miRNAs production and target sites. We also created a comprehensive wheat MITE database using known and identifying novel elements. We found high homology between MITEs and 14% of all the miRNAs production sites in wheat. Furthermore, we show that MITE-derived miRNAs have preference for target degradation sites with MITE insertions in 3' UTR regions in wheat.


Cell ◽  
2009 ◽  
Vol 136 (3) ◽  
pp. 461-472 ◽  
Author(s):  
R. Keith Slotkin ◽  
Matthew Vaughn ◽  
Filipe Borges ◽  
Miloš Tanurdžić ◽  
Jörg D. Becker ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 336 ◽  
Author(s):  
Justin P. Blumenstiel

Transposable elements (TEs) can be maintained in sexually reproducing species even if they are harmful. However, the evolutionary strategies that TEs employ during proliferation can modulate their impact. In this review, I outline the different life stages of a TE lineage, from birth to proliferation to extinction. Through their interactions with the host, TEs can exploit diverse strategies that range from long-term coexistence to recurrent movement across species boundaries by horizontal transfer. TEs can also engage in a poorly understood phenomenon of TE resurrection, where TE lineages can apparently go extinct, only to proliferate again. By determining how this is possible, we may obtain new insights into the evolutionary dynamics of TEs and how they shape the genomes of their hosts.


2001 ◽  
Vol 11 (19) ◽  
pp. R772-R775 ◽  
Author(s):  
Eric G Moss
Keyword(s):  

RNA ◽  
2012 ◽  
Vol 18 (12) ◽  
pp. 2201-2219 ◽  
Author(s):  
C. Toffano-Nioche ◽  
A. N. Nguyen ◽  
C. Kuchly ◽  
A. Ott ◽  
D. Gautheret ◽  
...  

BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 727 ◽  
Author(s):  
Gabriel Wallau ◽  
Pierre Capy ◽  
Elgion Loreto ◽  
Aurélie Hua-Van

Sign in / Sign up

Export Citation Format

Share Document