Evolution of bacterial type III protein secretion systems

2004 ◽  
Vol 12 (3) ◽  
pp. 113-115 ◽  
Author(s):  
M Saier,
2004 ◽  
Vol 70 (9) ◽  
pp. 5119-5131 ◽  
Author(s):  
Fabio Rezzonico ◽  
Geneviève Défago ◽  
Yvan Moënne-Loccoz

ABSTRACT Type III protein secretion systems play a key role in the virulence of many pathogenic proteobacteria, but they also occur in nonpathogenic, plant-associated bacteria. Certain type III protein secretion genes (e.g., hrcC) have been found in Pseudomonas sp. strain SBW25 (and other biocontrol pseudomonads), but other type III protein secretion genes, such as the ATPase-encoding gene hrcN, have not been found. Using both colony hybridization and a PCR approach, we show here that hrcN is nevertheless present in many biocontrol fluorescent pseudomonads. The phylogeny of biocontrol Pseudomonas strains based on partial hrcN sequences was largely congruent with the phylogenies derived from analyses of rrs (encoding 16S rRNA) and, to a lesser extent, biocontrol genes, such as phlD (for 2,4-diacetylphloroglucinol production) and hcnBC (for HCN production). Most biocontrol pseudomonads clustered separately from phytopathogenic proteobacteria, including pathogenic pseudomonads, in the hrcN tree. The exception was strain KD, which clustered with phytopathogenic pseudomonads, such as Pseudomonas syringae, suggesting that hrcN was acquired from the latter species. Indeed, strain KD (unlike strain SBW25) displayed the same organization of the hrpJ operon, which contains hrcN, as P. syringae. These results indicate that the occurrence of hrcN in most biocontrol pseudomonads is not the result of recent horizontal gene transfer from phytopathogenic bacteria, although such transfer might have occurred for a minority of biocontrol strains.


1998 ◽  
Vol 62 (2) ◽  
pp. 379-433 ◽  
Author(s):  
Christoph J. Hueck

SUMMARY Various gram-negative animal and plant pathogens use a novel, sec-independent protein secretion system as a basic virulence mechanism. It is becoming increasingly clear that these so-called type III secretion systems inject (translocate) proteins into the cytosol of eukaryotic cells, where the translocated proteins facilitate bacterial pathogenesis by specifically interfering with host cell signal transduction and other cellular processes. Accordingly, some type III secretion systems are activated by bacterial contact with host cell surfaces. Individual type III secretion systems direct the secretion and translocation of a variety of unrelated proteins, which account for species-specific pathogenesis phenotypes. In contrast to the secreted virulence factors, most of the 15 to 20 membrane-associated proteins which constitute the type III secretion apparatus are conserved among different pathogens. Most of the inner membrane components of the type III secretion apparatus show additional homologies to flagellar biosynthetic proteins, while a conserved outer membrane factor is similar to secretins from type II and other secretion pathways. Structurally conserved chaperones which specifically bind to individual secreted proteins play an important role in type III protein secretion, apparently by preventing premature interactions of the secreted factors with other proteins. The genes encoding type III secretion systems are clustered, and various pieces of evidence suggest that these systems have been acquired by horizontal genetic transfer during evolution. Expression of type III secretion systems is coordinately regulated in response to host environmental stimuli by networks of transcription factors. This review comprises a comparison of the structure, function, regulation, and impact on host cells of the type III secretion systems in the animal pathogens Yersinia spp., Pseudomonas aeruginosa, Shigella flexneri, Salmonella typhimurium, enteropathogenic Escherichia coli, and Chlamydia spp. and the plant pathogens Pseudomonas syringae, Erwinia spp., Ralstonia solanacearum, Xanthomonas campestris, and Rhizobium spp.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Junya Kato ◽  
Supratim Dey ◽  
Jose E Soto ◽  
Carmen Butan ◽  
Mason C Wilkinson ◽  
...  

Type III protein secretion systems (T3SS) are encoded by several pathogenic or symbiotic bacteria. The central component of this nanomachine is the needle complex. Here we show in a Salmonella Typhimurium T3SS that assembly of the needle filament of this structure requires OrgC, a protein encoded within the T3SS gene cluster. Absence of OrgC results in significantly reduced number of needle substructures but does not affect needle length. We show that OrgC is secreted by the T3SS and that exogenous addition of OrgC can complement a ∆orgC mutation. We also show that OrgC interacts with the needle filament subunit PrgI and accelerates its polymerization into filaments in vitro. The structure of OrgC shows a novel fold with a shared topology with a domain from flagellar capping proteins. These findings identify a novel component of T3SS and provide new insight into the assembly of the type III secretion machine.


2020 ◽  
Vol 113 (6) ◽  
pp. 1240-1254 ◽  
Author(s):  
Sibel Westerhausen ◽  
Melanie Nowak ◽  
Claudia E. Torres‐Vargas ◽  
Ursula Bilitewski ◽  
Erwin Bohn ◽  
...  

1998 ◽  
Vol 180 (17) ◽  
pp. 4532-4537 ◽  
Author(s):  
Gail Preston ◽  
Wen-Ling Deng ◽  
Hsiou-Chen Huang ◽  
Alan Collmer

ABSTRACT Mutations in the five hrp and hrc genes in the hrpC operon of the phytopathogen Pseudomonas syringae pv. syringae 61 have different effects on bacterial interactions with host and nonhost plants. The hrcC gene within the hrpC operon encodes an outer membrane component of the Hrp secretion system that is conserved in all type III protein secretion systems and is required for most pathogenic phenotypes and for secretion of the HrpZ harpin to the bacterial milieu. The other four genes (in order), hrpF, hrpG, (hrcC), hrpT, and hrpV, appear to be unique to the group I hrp clusters found in certain phytopathogens (e.g., P. syringae and Erwinia amylovora) and are less well understood. We initiated an examination of their role in Hrp regulation and secretion by determining the effects of functionally nonpolar nptIIcartridge insertions in each gene on the production and secretion of HrpZ, as determined by immunoblot analysis of cell fractions. P. syringae pv. syringae 61 hrpF, hrpG, andhrpT mutants were unable to secrete HrpZ, whereas thehrpV mutant overproduced and secreted the protein. This suggested that HrpV is a negative regulator of HrpZ production. Further immunoblot assays showed that the hrpV mutant produced higher levels of proteins encoded by all three of the majorhrp operons tested—HrcJ (hrpZ operon), HrcC (hrpC operon), and HrcQB (hrpUoperon)—and that constitutive expression of hrpV intrans abolished the production of each of these proteins. To determine the hierarchy of HrpV regulation in the P. syringae pv. syringae 61 positive regulatory cascade, which is composed of HrpRS (proteins homologous with ς54-dependent promoter-enhancer-binding proteins) and HrpL (alternate sigma factor), we tested the ability of constitutively expressed hrpV to repress the activation of HrcJ production that normally accompanies constitutive expression of hrpL or hrpRS. No repression was observed, indicating that HrpV acts upstream of HrpRS in the cascade. The effect of HrpV levels on transcription of thehrpZ operon was determined by monitoring the levels of β-glucuronidase produced by ahrpA′::uidA transcriptional fusion plasmid in different P. syringae pv. syringae 61 strains. The hrpV mutant produced higher levels of β-glucuronidase than the wild type, a hrcU (type III secretion) mutant produced the same level as the wild type, and the strain constitutively expressing hrpV in trans produced low levels equivalent to that of a hrpS mutant. These results suggest that HrpF, HrpG, and HrpT are all components of the type III protein secretion system whereas HrpV is a negative regulator of transcription of the Hrp regulon.


2002 ◽  
Vol 184 (5) ◽  
pp. 1324-1334 ◽  
Author(s):  
Briana M. Young ◽  
Glenn M. Young

ABSTRACT Yersinia enterocolitica maintains three different pathways for type III protein secretion. Each pathway requires the activity of a specific multicomponent apparatus or type III secretion system (TTSS). Two of the TTSSs are categorized as contact-dependent systems which have been shown in a number of different symbiotic and pathogenic bacteria to influence interactions with host organisms by targeting effector proteins into the cytosol of eukaryotic cells. The third TTSS is required for the assembly of flagella and the secretion of the phospholipase YplA, which has been implicated in Y. enterocolitica virulence. In this study, YplA was expressed from a constitutive promoter in strains that contained only a single TTSS. It was determined that each of the three TTSSs is individually sufficient for YplA secretion. Environmental factors such as temperature, calcium availability, and sodium chloride concentration affected the contribution of each system to extracellular protein secretion and, under some conditions, more than one TTSS appeared to operate simultaneously. This suggests that some proteins might normally be exported by more than one TTSS in Y. enterocolitca.


Sign in / Sign up

Export Citation Format

Share Document