scholarly journals Electron flow: key to mitigating ruminant methanogenesis

Author(s):  
Sinead C. Leahy ◽  
Peter H. Janssen ◽  
Graeme T. Attwood ◽  
Roderick I. Mackie ◽  
Tim A. McAllister ◽  
...  
Keyword(s):  
2003 ◽  
Vol 775 ◽  
Author(s):  
Ivan Stanish ◽  
Daniel A. Lowy ◽  
Alok Singh

AbstractImmobilized polymerized electroactive vesicles (IPEVs) are submicron biocapsules capable of storing charge in confined environments and chemisorbing on surfaces. Methods to immobilize stable submicron sized electroactive vesicles and the means to measure electroactivity of IPEVs at nanolevels have been demonstrated. IPEVs can withstand steep potential gradients applied across their membrane, maintain their structural integrity against surfaces poised at high/low electrical potentials, retain electroactive material over several days, and reversibly mediate (within the membrane) electron flow between the electrode surface and vesicle interior. IPEVs have strong potential to be used for charge storage and electron coupling applications that operate on the submicron scale and smaller.


2012 ◽  
Vol 30 (1) ◽  
pp. 100
Author(s):  
Wei HUANG ◽  
Shi-Bao ZHANG ◽  
Kun-Fang CAO

2019 ◽  
Vol 99 (3) ◽  
Author(s):  
Egor I. Kiselev ◽  
Jörg Schmalian

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 401
Author(s):  
Minh Khiem Nguyen ◽  
Tin-Han Shih ◽  
Szu-Hsien Lin ◽  
Jun-Wei Lin ◽  
Hoang Chinh Nguyen ◽  
...  

Photosynthesis is an essential biological process and a key approach for raising crop yield. However, photosynthesis in rice is not fully investigated. This study reported the photosynthetic properties and transcriptomic profiles of chlorophyll (Chl) b-deficient mutant (ch11) and wild-type rice (Oryza sativa L.). Chl b-deficient rice revealed irregular chloroplast development (indistinct membranes, loss of starch granules, thinner grana, and numerous plastoglobuli). Next-generation sequencing approach application revealed that the differential expressed genes were related to photosynthesis machinery, Chl-biosynthesis, and degradation pathway in ch11. Two genes encoding PsbR (PSII core protein), FtsZ1, and PetH genes, were found to be down-regulated. The expression of the FtsZ1 and PetH genes resulted in disrupted chloroplast cell division and electron flow, respectively, consequently reducing Chl accumulation and the photosynthetic capacity of Chl b-deficient rice. Furthermore, this study found the up-regulated expression of the GluRS gene, whereas the POR gene was down-regulated in the Chl biosynthesis and degradation pathways. The results obtained from RT-qPCR analyses were generally consistent with those of transcription analysis, with the exception of the finding that MgCH genes were up-regulated which enhance the important intermediate products in the Mg branch of Chl biosynthesis. These results indicate a reduction in the accumulation of both Chl a and Chl b. This study suggested that a decline in Chl accumulation is caused by irregular chloroplast formation and down-regulation of POR genes; and Chl b might be degraded via the pheophorbide b pathway, which requires further elucidation.


1984 ◽  
Vol 39 (5) ◽  
pp. 374-377 ◽  
Author(s):  
J. J. S. van Rensen

The reactivation of the Hill reaction in CO2-depleted broken chloroplasts by various concentrations of bicarbonate was measured in the absence and in the presence of photosystem II herbicides. It appears that these herbicides decrease the apparent affinity of the thylakoid membrane for bicarbonate. Different characteristics of bicarbonate binding were observed in chloroplasts of triazine-resistant Amaranthus hybridus compared to the triazine-sensitive biotype. It is concluded that photosystem II herbicides, bicarbonate and formate interact with each other in their binding to the Qв-protein and their interference with photosynthetic electron transport.


Sign in / Sign up

Export Citation Format

Share Document