scholarly journals The heat shock transcription factor HSF-1 protects Caenorhabditis elegans from peroxide stress

2020 ◽  
Vol 4 ◽  
pp. 88-92 ◽  
Author(s):  
Francesco A. Servello ◽  
Javier Apfeld
Genetics ◽  
2018 ◽  
Vol 210 (3) ◽  
pp. 999-1009 ◽  
Author(s):  
Peter Chisnell ◽  
T. Richard Parenteau ◽  
Elizabeth Tank ◽  
Kaveh Ashrafi ◽  
Cynthia Kenyon

2016 ◽  
Vol 473 (6) ◽  
pp. 789-796 ◽  
Author(s):  
Hyoe-Jin Joo ◽  
Saeram Park ◽  
Kwang-Youl Kim ◽  
Mun-Young Kim ◽  
Heekyeong Kim ◽  
...  

Heat-shock transcription factor HSF-1 appears to mediate enhanced ascaroside biosynthesis under heat stress by stimulating peroxisomal gene expression. Thus HSF-1 may be one of the regulatory factors involved in biosynthesis of ascaroside pheromones.


2020 ◽  
Author(s):  
Francesco A. Servello ◽  
Javier Apfeld

AbstractCells induce conserved defense mechanisms that protect them from oxidative stress. How these defenses are regulated in multicellular organisms is incompletely understood. Using the nematode Caenorhabditis elegans, we show that the heat shock transcription factor HSF-1 protects the nematode from the oxidative stress induced by environmental peroxide. In response to a heat shock or a mild temperature increase, HSF-1 protects the nematodes from subsequent oxidative stress in a manner that depends on HSF-1’s transactivation domain. At constant temperature, HSF-1 protects the nematodes from oxidative stress independently of its transactivation domain, likely by inducing the expression of asp-4/cathepsin D and dapk-1/dapk. Thus, two distinct HSF-1-dependent processes protect C. elegans from oxidative stress.


1994 ◽  
Vol 14 (11) ◽  
pp. 7557-7568 ◽  
Author(s):  
J Zuo ◽  
R Baler ◽  
G Dahl ◽  
R Voellmy

Heat stress regulation of human heat shock genes is mediated by human heat shock transcription factor hHSF1, which contains three 4-3 hydrophobic repeats (LZ1 to LZ3). In unstressed human cells (37 degrees C), hHSF1 appears to be in an inactive, monomeric state that may be maintained through intramolecular interactions stabilized by transient interaction with hsp70. Heat stress (39 to 42 degrees C) disrupts these interactions, and hHSF1 homotrimerizes and acquires heat shock element DNA-binding ability. hHSF1 expressed in Xenopus oocytes also assumes a monomeric, non-DNA-binding state and is converted to a trimeric, DNA-binding form upon exposure of the oocytes to heat shock (35 to 37 degrees C in this organism). Because endogenous HSF DNA-binding activity is low and anti-hHSF1 antibody does not recognize Xenopus HSF, we employed this system for mapping regions in hHSF1 that are required for the maintenance of the monomeric state. The results of mutagenesis analyses strongly suggest that the inactive hHSF1 monomer is stabilized by hydrophobic interactions involving all three leucine zippers which may form a triple-stranded coiled coil. Trimerization may enable the DNA-binding function of hHSF1 by facilitating cooperative binding of monomeric DNA-binding domains to the heat shock element motif. This view is supported by observations that several different LexA DNA-binding domain-hHSF1 chimeras bind to a LexA-binding site in a heat-regulated fashion, that single amino acid replacements disrupting the integrity of hydrophobic repeats render these chimeras constitutively trimeric and DNA binding, and that LexA itself binds stably to DNA only as a dimer but not as a monomer in our assays.


Biochemistry ◽  
1999 ◽  
Vol 38 (12) ◽  
pp. 3559-3569 ◽  
Author(s):  
Ralph Peteranderl ◽  
Mark Rabenstein ◽  
Yeon-Kyun Shin ◽  
Corey W. Liu ◽  
David E. Wemmer ◽  
...  

1992 ◽  
Vol 23 (4) ◽  
pp. 891-897 ◽  
Author(s):  
Amato J. Giaccia ◽  
Elizabeth A. Auger ◽  
Albert Koong ◽  
David J. Terris ◽  
Andrew I. Minchinton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document