peroxide stress
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 23)

H-INDEX

32
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Yumin Zhang ◽  
Song Liang ◽  
Zihao Pan ◽  
Yong Yu ◽  
Huochun Yao ◽  
...  

Abstract Streptococcus suis is an important emerging zoonosis that causes economic losses in the pig industry and severe threats to public health. Transcriptional regulators play essential roles in bacterial adaptation to host environments. In this study, we identified a novel XRE family transcriptional regulator in S. suis CZ130302, XtrSs, involved in the bacterial fitness to hydrogen peroxide stress. Based on electrophoretic mobility shift and β-galactosidase activity assays, we found that XtrSs autoregulated its own transcription and repressed the expression of its downstream gene psePs, a surface protein with unknown function in S. suis, by binding to a palindromic sequence from the promoter region. Furthermore, we proved that the deletion of the psePs gene attenuated bacterial antioxidant response. Phylogenetic analysis revealed that XtrSs and PsePs naturally co-existed as a combination in most S. suis genomes. Collectively, we demonstrated the binding characteristics of XtrSs in S. suis and provided a new insight that XtrSs played a critical role in modulating psePs to the hydrogen peroxide resistance of S. suis.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009087 ◽  
Author(s):  
Crispin Zavala-Alvarado ◽  
Samuel G. Huete ◽  
Antony T. Vincent ◽  
Odile Sismeiro ◽  
Rachel Legendre ◽  
...  

Pathogenic Leptospira are the causative agents of leptospirosis, the most widespread zoonotic infectious disease. Leptospirosis is a potentially severe and life-threatening emerging disease with highest burden in sub-tropical areas and impoverished populations. Mechanisms allowing pathogenic Leptospira to survive inside a host and induce acute leptospirosis are not fully understood. The ability to resist deadly oxidants produced by the host during infection is pivotal for Leptospira virulence. We have previously shown that genes encoding defenses against oxidants in L. interrogans are repressed by PerRA (encoded by LIMLP_10155), a peroxide stress regulator of the Fur family. In this study, we describe the identification and characterization of another putative PerR-like regulator (LIMLP_05620) in L. interrogans. Protein sequence and phylogenetic analyses indicated that LIMLP_05620 displayed all the canonical PerR amino acid residues and is restricted to pathogenic Leptospira clades. We therefore named this PerR-like regulator PerRB. In L. interrogans, the PerRB regulon is distinct from that of PerRA. While a perRA mutant had a greater tolerance to peroxide, inactivating perRB led to a higher tolerance to superoxide, suggesting that these two regulators have a distinct function in the adaptation of L. interrogans to oxidative stress. The concomitant inactivation of perRA and perRB resulted in a higher tolerance to both peroxide and superoxide and, unlike the single mutants, a double perRAperRB mutant was avirulent. Interestingly, this correlated with major changes in gene and non-coding RNA expression. Notably, several virulence-associated genes (clpB, ligA/B, and lvrAB) were repressed. By obtaining a double mutant in a pathogenic Leptospira strain, our study has uncovered an interplay of two PerRs in the adaptation of Leptospira to oxidative stress with a putative role in virulence and pathogenicity, most likely through the transcriptional control of a complex regulatory network.


2021 ◽  
Author(s):  
Stefan Katharios-Lanwermeyer ◽  
Sophia Koval ◽  
Kaitlyn Barrack ◽  
George O'Toole

Pseudomonas aeruginosa forms surface-attached communities that persist in the face of antimicrobial agents and environmental perturbation. Published work has found extracellular polysaccharide (EPS) production, regulation of motility and induction of stress response pathways as contributing to biofilm tolerance during such insults. However, little is known regarding the mechanism(s) whereby biofilm maintenance is regulated when exposed to such environmental challenges. Here, we provide evidence that the diguanylate cyclase YfiN is important for the regulation of biofilm maintenance when exposed to peroxide. We find that, compared to the wild type (WT), static biofilms of the ΔyfiN mutant exhibit a maintenance defect, which can be further exacerbated by exposure to peroxide (H2O2); this defect can be rescued through genetic complementation. Additionally, we found that the ΔyfiN mutant biofilms produce less c-di-GMP than WT, and that H2O2 treatment enhanced motility of surface-associated bacteria and increased cell death for the ΔyfiN mutant grown as a biofilm compared to WT biofilms. These data provide evidence that YfiN is required for biofilm maintenance by P. aeruginosa, via c-di-GMP signaling, to limit motility and protect viability in response to peroxide stress. These findings add to the growing recognition that biofilm maintenance by P. aeruginosa is an actively regulated process that is controlled, at least in part, by the wide array of c-di-GMP metabolizing enzymes found in this microbe.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248865
Author(s):  
Nicole Beier ◽  
Martin Kucklick ◽  
Stephan Fuchs ◽  
Ayten Mustafayeva ◽  
Maren Behringer ◽  
...  

Dinoroseobacter shibae living in the photic zone of marine ecosystems is frequently exposed to oxygen that forms highly reactive species. Here, we analysed the adaptation of D. shibae to different kinds of oxidative stress using a GeLC-MS/MS approach. D. shibae was grown in artificial seawater medium in the dark with succinate as sole carbon source and exposed to hydrogen peroxide, paraquat or diamide. We quantified 2580 D. shibae proteins. 75 proteins changed significantly in response to peroxide stress, while 220 and 207 proteins were differently regulated by superoxide stress and thiol stress. As expected, proteins like thioredoxin and peroxiredoxin were among these proteins. In addition, proteins involved in bacteriochlophyll biosynthesis were repressed under disulfide and superoxide stress but not under peroxide stress. In contrast, proteins associated with iron transport accumulated in response to peroxide and superoxide stress. Interestingly, the iron-responsive regulator RirA in D. shibae was downregulated by all stressors. A rirA deletion mutant showed an improved adaptation to peroxide stress suggesting that RirA dependent proteins are associated with oxidative stress resistance. Altogether, 139 proteins were upregulated in the mutant strain. Among them are proteins associated with protection and repair of DNA and proteins (e. g. ClpB, Hsp20, RecA, and a thioredoxin like protein). Strikingly, most of the proteins involved in iron metabolism such as iron binding proteins and transporters were not part of the upregulated proteins. In fact, rirA deficient cells were lacking a peroxide dependent induction of these proteins that may also contribute to a higher cell viability under these conditions.


2021 ◽  
Author(s):  
Lydia M. Varesio ◽  
Aretha Fiebig ◽  
Sean Crosson

Brucella ovis is an ovine intracellular pathogen with tropism for the male genital tract. To establish and maintain infection, B. ovis must survive stressful conditions inside host cells, including low pH, nutrient limitation, and reactive oxygen species. These same conditions are often encountered in axenic cultures during stationary phase. Studies of stationary phase may thus inform understanding of Brucella infection biology, yet the genes and pathways that are important in Brucella stationary phase physiology remain poorly defined. We measured fitness of a barcoded pool of B. ovis Tn-himar mutants as a function of growth phase and identified cysE as a determinant of fitness in stationary phase. CysE catalyzes the first step in cysteine biosynthesis from serine, and we provide genetic evidence that two related enzymes, CysK1 and CysK2, function redundantly to catalyze cysteine synthesis at steps downstream of CysE. Deleting either cysE (ΔcysE) or both cysK1 and cysK2 (ΔcysK1 ΔcysK2) results in premature entry into stationary phase, reduced culture yield and sensitivity to exogenous hydrogen peroxide. These phenotypes can be chemically complemented by cysteine or glutathione. ΔcysE and ΔcysK1 ΔcysK2 strains have no defect in host cell entry in vitro but have significantly diminished intracellular fitness between 2 and 24 hours post infection. Our study has uncovered unexpected redundancy at the CysK step of cysteine biosynthesis in B. ovis, and demonstrates that cysteine anabolism is a determinant of peroxide stress survival and fitness in the intracellular niche.


2021 ◽  
Author(s):  
Jessica K. Kajfasz ◽  
Peter Zuber ◽  
Tridib Ganguly ◽  
Jacqueline Abranches ◽  
José A. Lemos

The ability of bacteria such as the dental pathogen Streptococcus mutans to coordinate a response against damage-inducing oxidants is a critical aspect of their pathogenicity. The oxidative stress regulator SpxA1 has been demonstrated to be a major player in the ability of S. mutans to withstand both disulfide and peroxide stresses. While studying spontaneously-occurring variants of an S. mutans ΔspxA1 strain, we serendipitously discovered that our S. mutans UA159 host strain bore a single nucleotide deletion within the coding region of perR, resulting in a premature truncation of the encoded protein. PerR is a metal-dependent transcriptional repressor that senses and responds to peroxide stress such that loss of PerR activity results in activation of oxidative stress responses. To determine the impact of loss of PerR regulation, we obtained a UA159 isolate bearing an intact perR copy and created a clean perR deletion mutant. Our findings indicate that loss of PerR activity results in a strain that is primed to tolerate oxidative stresses in the laboratory setting. Interestingly, RNA-Seq and targeted transcriptional expression analyses reveal that PerR offers a minor contribution to the ability of S. mutans to orchestrate a transcriptional response to peroxide stress. Furthermore, we detected loss-of-function perR mutations in two other commonly used laboratory strains of S. mutans suggesting that this may be not be an uncommon occurrence. This report serves as a cautionary tale regarding the so-called domestication of laboratory strains and advocates for the implementation of more stringent strain authentication practices. Importance: A resident of the human oral biofilm, Streptococcus mutans is one of the major bacterial pathogens associated with dental caries. This report highlights a spontaneously-occurring mutation within the laboratory strain S. mutans UA159, found in the coding region of perR, a gene encoding a transcriptional repressor associated with peroxide tolerance. Though perR mutant strains of S. mutans showed a distinct growth advantage and enhanced tolerance toward H2O2, a ΔperR deletion strain showed a small number of differentially expressed genes as compared to the parent strain, suggesting few direct regulatory targets. In addition to characterizing the role of PerR in S. mutans, our findings serve as a warning to laboratory researchers regarding bacterial adaptation to in vitro growth conditions.


2020 ◽  
Author(s):  
Crispin Zavala-Alvarado ◽  
Antony T. Vincent ◽  
Odile Sismeiro ◽  
Rachel Legendre ◽  
Hugo Varet ◽  
...  

AbstractPathogenic Leptospira are the causative agents of leptospirosis, the most widespread zoonotic infectious disease. Leptospirosis is a potentially severe and life-threatening emerging disease with highest burden in sub-tropical areas and impoverish populations. Mechanisms allowing pathogenic Leptospira to survive inside a host and induce acute leptospirosis are not fully understood. The ability to resist deadly oxidants produced by the host during infection is pivotal for Leptospira virulence. We have previously shown that genes encoding defenses against oxidants in L. interrogans are repressed by PerRA (encoded by LIMLP_10155), a peroxide stress regulator of the Fur family. In this study, we describe the identification and characterization of another putative PerR-like regulator (LIMLP_05620) in L. interrogans. Protein sequence and phylogenetic analyses indicated that LIMLP_05620 displayed all the canonical PerR amino acid residues and is restricted to pathogenic Leptospira clades. We therefore named this PerR-like regulator PerRB. In L. interrogans, the PerRB regulon is distinct from that of PerRA. While a perRA mutant had a greater tolerance to peroxide, inactivating perRB led to a higher tolerance to superoxide, suggesting that these two regulators have a distinct function in the adaptation of L. interrogans to oxidative stress. The concomitant inactivation of perRA and perRB resulted in a higher tolerance to both peroxide and superoxide and, unlike the single mutants, to the loss of Leptospira virulence. Interestingly, this correlated with major changes in gene and non-coding RNA expression, only observed in the double perRAperRB mutant. Notably, several virulence-associated genes (clpB, ligA/B, and lvrAB) were repressed. By obtaining the first double mutant in a pathogenic Leptospira strain, our study has uncovered for the first time the interplay of two PerRs, not only in the adaptation of Leptospira to oxidative stress, but also in their virulence and pathogenicity, most likely through the transcriptional control of a complex regulatory network.Author summaryLeptospirosis is a widespread infectious disease responsible for over one million of severe cases and 60 000 fatalities annually worldwide. This neglected and emerging disease has a worldwide distribution, but it mostly affects populations from developing countries in sub-tropical areas. The causative agents of leptospirosis are pathogenic bacterial Leptospira spp. There is a considerable deficit in our knowledge of these atypical bacteria, including their virulence mechanisms. In addition to the Leptospira PerRA regulator that represses defenses against peroxide, we have identified and characterized a second PerR regulator in pathogenic Leptospira species (PerRB) that participates in Leptospira tolerance to superoxide. Phenotypic and transcriptomic analyses of single PerRA and PerRB mutants suggest that the two PerRs fulfill distinct functions in the adaptation to oxidative stress. However, concomitant inactivation of PerRA and PerRB resulted in a higher tolerance to both peroxide and superoxide, but to a loss virulence.The absence of the two PerR regulators resulted in global and major changes in the transcriptional profile, including a dramatic decrease of several virulence factor expression. Our study has demonstrated that PerRA and PerRB cooperate to orchestrate a complex regulatory network involved in Leptospira virulence.


2020 ◽  
Author(s):  
Jessica K. Kajfasz ◽  
Peter Zuber ◽  
Tridib Ganguly ◽  
Jacqueline Abranches ◽  
José A. Lemos

AbstractThe ability of bacteria such as the dental pathogen Streptococcus mutans to coordinate a response against damage-inducing oxidants is a critical aspect of their pathogenicity. The oxidative stress regulator SpxA1 has been proven to be a major player in the ability of S. mutans to withstand both disulfide and peroxide stresses. While studying spontaneously-occurring variants of an S. mutans ΔspxA1 strain, we serendipitously discovered that our S. mutans UA159 host strain bore a single nucleotide deletion within the coding region ofperR, resulting in a premature truncation of the encoded protein. PerR is a metal-dependent transcriptional repressor that senses and responds to peroxide stress such that loss of PerR activity results in activation of oxidative stress responses. To determine the impact of loss of PerR regulation, we obtained a UA159 isolated bearing an intact perR copy and created a clean perR deletion mutant. Our findings indicate that loss of PerR activity results in a strain that is primed to tolerate oxidative stresses in the laboratory setting. Interestingly, RNA-Seq and targeted transcriptional expression analyses reveal that PerR has a minor contribution to the ability of S. mutans to orchestrate a transcriptional response to peroxide stress. Furthermore, we detected loss-of-function perR mutations in two other commonly used laboratory strains of S. mutans suggesting that this may be not be an uncommon occurrence. This report serves as a cautionary warning regarding the so-called domestication of laboratory strains and advocates for the implementation of more stringent strain authentication practices.ImportanceA resident of the human oral biofilm, Streptococcus mutans is one of the major bacterial pathogens associated with dental caries. This report highlights a spontaneously-occurring mutation within the laboratory strain S. mutans UA159, found in the coding region of perR, a gene encoding a transcriptional repressor associated with peroxide tolerance. Though perR mutant strains of S. mutans showed a distinct growth advantage and enhanced tolerance toward H2O2, a ΔperR deletion strain showed a small number of differentially expressed genes as compared to the parent strain, suggesting few direct regulatory targets. In addition to characterizing the role of PerR in S. mutans, our findings serve as a warning to laboratory researchers regarding bacterial adaptation to in vitro growth conditions.


2020 ◽  
Vol 87 ◽  
pp. 103389 ◽  
Author(s):  
Zhengyuan Zhai ◽  
Yang Yang ◽  
Hui Wang ◽  
Guohong Wang ◽  
Fazheng Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document