The toxic effects and potential mechanisms of deoxynivalenol on the structural integrity of fish gill: Oxidative damage, apoptosis and tight junctions disruption

Toxicon ◽  
2020 ◽  
Vol 174 ◽  
pp. 32-42
Author(s):  
Chen Huang ◽  
Lin Feng ◽  
Xiang-An Liu ◽  
Wei-Dan Jiang ◽  
Pei Wu ◽  
...  
Toxins ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 333 ◽  
Author(s):  
Ya-Li Wang ◽  
Xiao-Qiu Zhou ◽  
Wei-Dan Jiang ◽  
Pei Wu ◽  
Yang Liu ◽  
...  

Zearalenone (ZEA) is a prevalent mycotoxin with high toxicity in animals. In order to study its effect on juvenile grass carp (Ctenopharyngodon idella), six diets supplemented with different levels of ZEA (0, 535, 1041, 1548, 2002, and 2507 μg/kg diet) for 10 weeks were studied to assess its toxicity on intestinal structural integrity and potential mechanisms of action. Our report firstly proved that ZEA led to growth retardation and body deformity, and impaired the intestinal structural integrity of juvenile grass carp, as revealed by the following findings: (1) ZEA accumulated in the intestine and caused histopathological lesions; (2) ZEA resulted in oxidative injury, apoptosis, and breached tight junctions in the fish intestine, which were probably associated with Nuclear factor-erythroid 2-related factor 2 (Nrf2), p38 mitogen activated protein kinases (p38MAPK), and myosin light chain kinase (MLCK) signaling pathways, respectively. ZEA had no influence on the antioxidant gene levels of Kelch-like ECH associating protein 1 (Keap1)b (rather than Keap1a), glutathione-S-transferase (GST)P1, GSTP2 (not in the distal intestine (DI)), tight junctions occludin, claudin-c (not in the proximal intestine (PI)), or claudin-3c (not in the mid intestine (MI) or DI).


Author(s):  
Tianle Tang ◽  
Zhang Zhang ◽  
Xiaopeng Zhu

Titanium dioxide nanoparticles (TiO2 NPs) have become a widely used nanomaterial due to the photocatalytic activity and absorption of ultraviolet light of specific wavelengths. This study investigated the toxic effects of rutile TiO2 NPs on zebrafish by examining its embryos and adults. In the embryo acute toxicity test, exposure to 100 mg/L TiO2 NPs didn’t affect the hatching rate of zebrafish embryos, and there was no sign of deformity. In the adult toxicity test, the effects of TiO2 NPs on oxidative damage in liver, intestine and gill tissue were studied. Enzyme linked immunosorbent assay (ELISA) and fluorescence-based quantitative real-time reverse transcription PCR (qRT-PCR) were used to detect the three antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT) and glutathione S transferase (GSTs) in the above mentioned zebrafish organs at protein and gene levels. The results showed that long-term exposure to TiO2 NPs can cause oxidative damage to organisms; and compared with the control group, the activity of the three kinds of enzyme declined somewhat at the protein level. In addition, long-term exposure to TiO2 NPs could cause high expression of CAT, SOD and GSTs in three organs of adult zebrafish in order to counter the adverse reaction. The effects of long-term exposure to TiO2 NPs to adult zebrafish were more obvious in the liver and gill.


2010 ◽  
Vol 26 (5) ◽  
pp. 309-317 ◽  
Author(s):  
Alessandro Sgambato ◽  
Ivo Iavicoli ◽  
Martina Goracci ◽  
Maddalena Corbi ◽  
Alma Boninsegna ◽  
...  

Cement is widely used for construction and several reports have suggested a potential toxicity of cement dusts although it has never been definitively assessed. To determine the cytotoxic and bioactive effects of cement dusts, cultures of normal rat fibroblasts were exposed to different types of cements and cell growth parameters, apoptosis and the occurrence of DNA damage (both in terms of DNA breaks and oxidative damage) were analyzed. Cells were exposed to cement extracts or cultured in direct contact with cement dusts and the results obtained were compared to cells cultured in fresh medium. A dose-dependent decrease in viable cells was observed with all tested cements. Different results were obtained in the cell-cement direct contact tests compared to the indirect contact tests performed using extracts. Inhibition of cell growth was associated in most cases with an accumulation of cells in the S-phase of the cell-cycle and the appearance of an apoptotic peak. DNA strand breaks, assessed by comet test, and increase in the levels of 8-OHdG, an important marker of DNA oxidative damage, always occurred by incubating cells in the presence of cement extracts or dusts. However, after removal of cement, a rapid damage repair was generally observed with an almost complete recovery within 12 hours. In conclusion, all cements analyzed in this study displayed a limited toxicity in vitro without significant differences amongst them. Overall, the results obtained indicate that cements should be treated as hazardous materials but they do not allow to make accurate predictions regarding the in vivo effects. Further studies are warranted to reach a better understanding of the potential toxic effects of cements, to identify the responsible mechanisms and to evaluate the possibility of modulating and/ or preventing them.


2021 ◽  
Author(s):  
Fathima Hajee Basha ◽  
S. Hemalatha

Abstract Neurodegeneration may be defined as a clinical condition wherein neurons gradually lose their structural integrity, viability, functional abilities and the damage inflicted upon the neurons is often irreversible. The number of elderly patients suffering from Neurodegenerative disorders is expected to rise tremendously over the next couple of years. Thus, there is an urgent need to delve into and study the underlying cause and mechanisms, so that we may be able to develop more effective therapeutic strategies and drugs and better understand the origin and progression of the disease.The various mechanisms that have been observed to contribute to neurodegeneration include aggregation and accumulation of misfolded proteins, impaired autophagy, oxidative damage, neuroinflammation, mitochondrial defects, increased SUMOylation of proteins, impaired UPR pathways, disruption of axonal transport.Melatonin, a neurohormone is involved in a variety of functions including scavenging free radicals, synchronizing the circadian rhythm, mitigating immune response.Melatonin has shown to modulate the UPR pathway ,antioxidant pathway through Nrf2 and inflammatory pathway through NFκB. The study aims to determine the efficacy of melatonin on neurodegeneration mediated by ER stress, inflammation and oxidative damage through in silico approaches. The molecular targets chosen were ATF6, XBP1, PERK, Nrf2, NFκB and they were docked against melatonin. Additionally various physiochemical analysis such as ADME were also carried out to determine its drug ability. The findings were that melatonin not only shows excellent interactions with the targets but also possess drug-like physicochemical properties that makes it a valuable choice for the treatment of neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document