Murine bone marrow-derived dendritic cells as a potential in vitro model for predictive identification of chemical sensitizers

2007 ◽  
Vol 175 (1-3) ◽  
pp. 89-101 ◽  
Author(s):  
E PEPIN ◽  
M GOUTET ◽  
M BAN
2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Kostinova AM ◽  
◽  
Yukhacheva DV ◽  
Akhmatova EA ◽  
Akhmatova NK ◽  
...  

Background: Possibility to control immune system by regulating the activity of Dendritic Cells (DC) with the help of vaccines or other immunobiological drugs opens great prospects for infectious, oncological and autoimmune control. The aim of this study was to evaluate in vitro the effect of adjuvant subunit and non-adjuvant split influenza vaccines on maturation of DCs from human bone marrow. Methods: From bone marrow cells of healthy volunteers, DCs were obtained using rGM-CSF and IL-4. On the 8th day of cultivation, 10μl of vaccines against influenza were introduced into the culture of Immature DCs (i-DCs): a non-adjuvant split vaccine (Vaxigripp, Sanofi Pasteur) and an immunoadjuvant subunit vaccine (Grippol plus, Petrovax), as well as immunomodulator Polyoxidonium. Results: Insertion of influenza vaccines into i-DC culture induced the acquisition by DCs typical morphological signs of maturation. DCs became large with eccentrically located of irregular shape nucleus, densified cytoplasm, numerous processes. By immunophenotypic examination decrease in monocyte/macrophage pool, cells with expression of CD34 immaturity marker, increase in expressing CD11c/CD86 costimulatory molecules and CD83 terminal differentiation molecules were observed. Although Polyoxidonium caused a decrease in number of CD11c/CD14 cells (18, 5%), but compared to vaccines, its activity was lower (p<0, 05). Grippol plus more actively induced differentiation of TLR2 and TLR8 expressing cells, whereas Vaxigripp-expression of TLR4 and TLR8 on DCs. Conclusion: The possibility of using in vitro model of DCs obtained from human bone marrow cells by cytokine stimulation for examination of the ability of influenza vaccines to induce DC maturation processes has been demonstrated.


2016 ◽  
Vol 364 (3) ◽  
pp. 573-584 ◽  
Author(s):  
Patrick Wuchter ◽  
Rainer Saffrich ◽  
Stefan Giselbrecht ◽  
Cordula Nies ◽  
Hanna Lorig ◽  
...  

2006 ◽  
Vol 29 (2) ◽  
pp. 354-360 ◽  
Author(s):  
Gi-Young Kim ◽  
Woo-Shin Ko ◽  
Jae-Yoon Lee ◽  
Jeong-Ok Lee ◽  
Chung-Ho Ryu ◽  
...  

Blood ◽  
1986 ◽  
Vol 68 (1) ◽  
pp. 250-257 ◽  
Author(s):  
RE Waugh ◽  
M Sassi

Abstract An in vitro system has been developed that mimics the passage of erythrocytes from the bone marrow to the circulation. Bone marrow egress and its proper regulation are vital physiologic processes. However, because of the inaccessibility of the marrow, it is difficult to evaluate the various factors important in controlling these processes or even to define the precise mechanism by which egress occurs. The in vitro system has been designed to evaluate the importance of different physical parameters in regulating egress. It consists of a thin silicon wafer (thickness approximately equal to 1.0 micron) cemented over the tip of a large (15.0 micron ID) micropipette. The wafer contains a single circular pore. Cells were observed under the microscope as they passed through the pore under controlled pressures. The rate and duration of passage were obtained from videorecordings of the experiment. The measured passage times agreed well with the predictions of a simple analytical model of a cell passing through a thin aperture. The experimental results confirm the conclusion reached from the analysis that the pressures needed to drive a cell through the pore are well within the physiologic range, and the time needed to complete egress is typically less than 1.0 seconds. These results support the hypothesis that erythrocyte egress may be driven by a hydrostatic pressure difference across the pore.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2956-2956
Author(s):  
K. Ganeshaguru ◽  
N. I. Folarin ◽  
R. J. Baker ◽  
A. M. Casanova ◽  
A. Bhimjiyani ◽  
...  

Abstract B-cell chronic lymphocytic leukaemia (CLL) is a heterogeneous disease with a variable clinical course. The disease is characterised by the proliferation in the bone marrow and lymph node of a clonal population of CD5+ve cells that accumulates in the peripheral blood. Therefore, the characteristics of the proliferative compartment are important in determining the kinetics of disease progression in CLL and the sensitivity of the malignant cells to cytotoxic drugs. However, laboratory studies on drug sensitivity of CLL have been performed exclusively on resting circulating peripheral blood cells since it is not feasible to obtain cells from the proliferating pool in sufficient numbers for in vitro analysis. CLL cells can be stimulated to proliferate in vitro using CpG oligonucleotides (ODN) and other factors. The aim of the present study was to generate and validate an in vitro model using malignant cells from the peripheral blood of patients with CLL. The expression pattern of proteins eg., survivin in this model should mimic that in proliferating CLL cells in the bone marrow and lymph nodes. Survivin is a member of the family of inhibitor of apoptosis (IAP) proteins with an additional role in cell cycle progression. Survivin has been shown to be expressed in proliferating bone marrow and lymphoid cells. Cells from patients with CLL were activated for 72h with a combination of ODN (1μM), IL-2 (100u/ml) and CD40L (0.5μg/ml) (ODN*). Activated cells retained their characteristic CLL immunophenotype as determined by the continued expression of CD5, CD19, CD23 and CD25 (n=5). Cell proliferation was confirmed by increased incorporation of 3H-thymidine into DNA in activated cells (n=12). Novel findings in the ODN* activated CLL cells were significant increases in expression of CD38 (n=7, p=0.0001) and of T-cell zeta associated protein (ZAP-70) tyrosine kinase (n=14, p=0.0005). The increased expression of both these proteins in circulating peripheral blood CLL cells has been associated with poor prognosis. All six ODN* activated CLL isolates analysed by western blotting showed increased survivin expression with no constitutive expression in the controls. Drug sensitivity was studied in cells from eight patients using the MTT assay. Activated cells showed significantly greater resistance to chlorambucil (median IC50=164.4±28.18μM) compared to control cells (median IC50=93.63±14.96μM, p=0.044). Figure 1 shows representative IC50 curves. The increased resistance of the activated cells to chlorambucil may be a consequence of the upregulation of survivin. In summary, the in vitro model replicates several key features of authentic proliferating CLL cells found in bone marrow and lymph nodes. It also shows increased resistance to the conventional drug chlorambucil. This model may be of value in evaluating novel drugs and drug combinations which may be more effective in killing the proliferating population that maintain the malignant cell population in CLL. Figure Figure


2005 ◽  
Vol 28 (5) ◽  
pp. 685-691 ◽  
Author(s):  
J GARBADE ◽  
A SCHUBERT ◽  
A RASTAN ◽  
D LENZ ◽  
T WALTHER ◽  
...  

2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Ken-Zaburo Oshima ◽  
Kazuhito Asano ◽  
Ken-Ichi Kanai ◽  
Miyuki Suzuki ◽  
Harumi Suzaki

There is established concept that dendritic cells (DCs) play essential roles in the development of allergic immune responses. However, the influence of receptor antagonists on DC functions is not well defined. The aim of the present study was to examine the effect of epinastine hydrochloride (EP), the most notable histamine receptor antagonists in Japan, onDermatophagoides farinae (Der f)-pulsed mouse bone marrow-derived DCs in vitro and in vivo. EP at more than 25 ng/mL could significantly inhibit the production of IL-6, TNF- and IL-10 fromDer f-pulsed DCs, which was increased byDer fchallenge in vitro. On the other hand, EP increased the ability ofDer f-pulsed DCs to produce IL-12. Intranasal instillation ofDer f-pulsed DCs resulted in nasal eosinophilia associated with a significant increase in IL-5 levels in nasal lavage fluids.Der f-pulsed and EP-treated DCs significantly inhibited nasal eosinophila and reduced IL-5. These results indicate that EP inhibits the development of Th2 immune responses through the modulation of DC functions and results in favorable modification of clinical status of allergic diseases.


1995 ◽  
Vol 7 (3) ◽  
pp. 185-196 ◽  
Author(s):  
Masahiro Yasunaga ◽  
Satoko Adachi ◽  
Noriyuki Itoh ◽  
Shin-Ichi Nishikawa

Sign in / Sign up

Export Citation Format

Share Document