Dibutyl phthalate exposure aggravates type 2 diabetes by disrupting the insulin-mediated PI3K/AKT signaling pathway

2018 ◽  
Vol 290 ◽  
pp. 1-9 ◽  
Author(s):  
Ting Deng ◽  
Yu Zhang ◽  
Yang Wu ◽  
Ping Ma ◽  
Jiufei Duan ◽  
...  
2013 ◽  
Vol 91 (11) ◽  
pp. 901-912 ◽  
Author(s):  
Raja Latha ◽  
Palanivelu Shanthi ◽  
Panchanadham Sachdanandam

This study aimed at investigating the efficacy of Kalpaamruthaa (KA) on cardiovascular damage (CVD) associated with type 2 diabetes mellitus in experimental rats by reducing oxidative stress and the modulation of the protein kinase C-β (PKC-β)/Akt signaling pathway. CVD-induced rats were treated with KA (200 mg·(kg body mass)–1·(day)–1) orally for 4 weeks. KA effectively reduced insulin resistance with alterations in blood glucose, hemoglobin, and glycosylated hemoglobin in CVD-induced rats. Elevated levels of lipids in CVD-induced rats were decreased upon KA administration. In CVD-induced rats the levels of lipoproteins were returned to normal by KA treatment. KA effectively reduced the lipid peroxidative product and protein carbonyl content in liver of CVD-induced rats. KA increased the activities and (or) levels of enzymatic and nonenzymatic antioxidants in liver of CVD-induced rats. KA treatment reduced the fatty inclusion and mast cell infiltration in liver of CVD-induced rats. Further, treatment with KA reduced the chromatin condensation and marginization in myocardium of CVD-induced rats. KA alters insulin signaling by decreasing PKC-β and increasing p-Akt and GLUT4 expressions in heart of CVD-induced rats. The above findings suggest that KA renders protection against CVD induced by type 2 diabetes mellitus by augmenting the cellular antioxidant defense capacity and modulating PKC-β and the p-Akt signaling pathway.


2019 ◽  
Vol 10 (5) ◽  
pp. 2538-2551 ◽  
Author(s):  
Yao Liu ◽  
Jianjun Deng ◽  
Daidi Fan

Ginsenoside Rk3 (G-Rk3) is a main active ingredient of ginsenosides.


2021 ◽  
Vol 12 ◽  
Author(s):  
SanBao Chai ◽  
Yao Chen ◽  
SiXu Xin ◽  
Ning Yuan ◽  
YuFang Liu ◽  
...  

ObjectiveWe aimed to explore the role and possible mechanism of leptin in lower-extremity artery calcification in patients with type 2 diabetes mellitus (T2DM).MethodsWe recruited 59 male patients with T2DM and 39 non-diabetic male participants. All participants underwent computed tomography scan of lower-extremity arteries. The calcification scores (CSs) were analyzed by standardized software. Plasma leptin level was determined by radioimmunoassay kits. Human vascular smooth muscle cells (VSMCs) calcification model was established by beta-glycerophosphate and calcium chlorideinduction. Calcium deposition and mineralization were measured by the o-cresolphthalein complexone method and Alizarin Red staining. The mRNA expression of bone morphogenic protein 2 (BMP2), runt-related transcription factor 2 (Runx2), osteocalcin (OCN) and osteopontin (OPN) was determined by quantitative RT-PCR. The protein levels of BMP2, Runx2, α-smooth muscle actin (α-SMA) and (p)-Akt was determined by Western-blot analysis, and α-SMA was also measured by immunofluorescence analysis.ResultsCompared with controls, patients with T2DM showed higher median calcification score in lower-extremity artery [286.50 (IQR 83.41, 1082.00) vs 68.66 (3.41, 141.30), p<0.01]. Plasma leptin level was higher in patients with calcification score ≥300 than ≥100 (252.67 ± 98.57 vs 189.38 ± 44.19 pg/ml, p<0.05). Compared with calcification medium, intracellular calcium content was significantly increased in VSMCs treated by leptin (200, 400 and 800 ng/ml) combined with calcification medium [11.99 ± 3.63, 15.18 ± 4.55, and 24.14 ± 5.85 mg/ml, respectively, vs 7.27 ± 1.54 mg/ml, all p<0.01]. Compared with calcification medium, Alizarin Red staining showed calcium disposition was more obvious, and the mRNA level of BMP2, Runx2 and OCN was significantly increased, and immunofluorescence and Western blot analysis showed that the expression of α-SMA was downregulated in VSMCs treated by leptin (400 ng/ml) combined with calcification medium, respectively. Compared with calcification medium, the protein level of BMP2 and Runx2 was upregulated in VSMCs treated by leptin (400 ng/ml) combined with calcification medium. Moreover, blocking PI3K/Akt signaling pathway can decrease the protein expression of BMP2 and Runx2 in VSMCs treated by leptin (400 ng/ml) combined with calcification medium.ConclusionsLeptin promoted lower-extremity artery calcification of T2DM by upregulating the expression of BMP2 and Runx2, and regulating phenotypic switch of VSMCs via PI3K/Akt signaling pathway.


2021 ◽  
Vol 50 (Supplement_1) ◽  
Author(s):  
Yu-xiang Yan ◽  
Ya-Ke Lu ◽  
Xi Chu ◽  
Yue Sun ◽  
Jing Dong

Abstract Background The underlying molecular mechanism of type 2 diabetes (T2D) and insulin resistance is that abnormalities occur in the complex insulin signaling pathway. Circular RNAs (circRNAs) are involved in the development of diseases by regulating gene expression and become promising novel biomarkers for diseases. This study screened and validated the insulin signaling pathway-related circulating circRNAs, which are associated with T2D. Methods Based on circRNA microarray, candidate circRNAs involved in the insulin PI3K/Akt signaling pathway were selected and validated by RT-qPCR. The association between circRNAs and T2D and their clinical significance were further assessed by logistic regression model, correlation analysis and ROC curve in a large cohort. The miRNA targets of validated circRNAs was verified by dual-luciferase reporter assay. Results A total of 370 upregulated circRNAs and 180 downregulated circRNAs were differentially expressed between new T2D cases and controls. hsa_circ_0063425, hsa_circ_0056891 and hsa_circ_0104123 were selected as candidate circRNAs for validation. Low expressed circ_0063425 and hsa_circ_0056891 were independent predictors of T2D, impaired fasting glucose (IFG) and insulin resistance. The two-circRNA panel had a high diagnostic accuracy for discriminating T2D and IFG from healthy controls. miR-19a-3p and miR-1-3p were identified as the miRNA targets of hsa_circ_0063425 and hsa_circ_0056891, respectively. Significantly positive correlations were found between the expression levels of AKT and hsa_circ_0063425, PI3K and hsa_circ_0056891, in the total sample and subgroups stratified by glucose levels. Conclusion hsa_circ_0063425 and hsa_circ_0056891 are valuable circulating biomarkers for early detection of T2D, which may be involved in regulation of PI3K/AKT signaling. Key messages Insulin signaling pathway-related circulating circRNAs was identification as novel biomarkers of type 2 diabetes. Keywords circRNA; type 2 diabetes; insulin signaling; biomarker.


Sign in / Sign up

Export Citation Format

Share Document