scholarly journals Modeling the effect of sensor failure on the location of counting sensors for origin-destination (OD) estimation

2021 ◽  
Vol 132 ◽  
pp. 103367
Author(s):  
Mostafa Salari ◽  
Lina Kattan ◽  
William H.K. Lam ◽  
Mohammad Ansari Esfeh ◽  
Hao Fu
Keyword(s):  
Author(s):  
Chun-An Huang ◽  
Han-Yun Long ◽  
King-Ting Chiang ◽  
Li Chuang ◽  
Kevin Tsui

Abstract This paper demonstrates a new de-process flow for MEMS motion sensor failure analysis, using layer by layer deprocessing to locate defect points. Analysis tools used in this new process flow include IR optical microscopy, thermal system, SEM and a cutting system to de-process of MEMS motion sensor and successful observation defect points.


Author(s):  
Navaamsini Boopalan ◽  
Agileswari K. Ramasamy ◽  
Farrukh Hafiz Nagi

Array sensors are widely used in various fields such as radar, wireless communications, autonomous vehicle applications, medical imaging, and astronomical observations fault diagnosis. Array signal processing is accomplished with a beam pattern which is produced by the signal's amplitude and phase at each element of array. The beam pattern can get rigorously distorted in case of failure of array element and effect its Signal to Noise Ratio (SNR) badly. This paper proposes on a Hybrid Neural Network layer weight Goal Attain Optimization (HNNGAO) method to generate a recovery beam pattern which closely resembles the original beam pattern with remaining elements in the array. The proposed HNNGAO method is compared with classic synthesize beam pattern goal attain method and failed beam pattern generated in MATLAB environment. The results obtained proves that the proposed HNNGAO method gives better SNR ratio with remaining working element in linear array compared to classic goal attain method alone. Keywords: Backpropagation; Feed-forward neural network; Goal attain; Neural networks; Radiation pattern; Sensor arrays; Sensor failure; Signal-to-Noise Ratio (SNR)


Author(s):  
Samuel J. Moore ◽  
Chris D. Nugent ◽  
Shuai Zhang ◽  
Ian Cleland ◽  
Sadiq Sani ◽  
...  
Keyword(s):  

2021 ◽  
pp. 147592172110219
Author(s):  
Huachen Jiang ◽  
Chunfeng Wan ◽  
Kang Yang ◽  
Youliang Ding ◽  
Songtao Xue

Wireless sensors are the key components of structural health monitoring systems. During the signal transmission, sensor failure is inevitable, among which, data loss is the most common type. Missing data problem poses a huge challenge to the consequent damage detection and condition assessment, and therefore, great importance should be attached. Conventional missing data imputation basically adopts the correlation-based method, especially for strain monitoring data. However, such methods often require delicate model selection, and the correlations for vehicle-induced strains are much harder to be captured compared with temperature-induced strains. In this article, a novel data-driven generative adversarial network (GAN) for imputing missing strain response is proposed. As opposed to traditional ways where correlations for inter-strains are explicitly modeled, the proposed method directly imputes the missing data considering the spatial–temporal relationships with other strain sensors based on the remaining observed data. Furthermore, the intact and complete dataset is not even necessary during the training process, which shows another great superiority over the model-based imputation method. The proposed method is implemented and verified on a real concrete bridge. In order to demonstrate the applicability and robustness of the GAN, imputation for single and multiple sensors is studied. Results show the proposed method provides an excellent performance of imputation accuracy and efficiency.


2015 ◽  
Vol 665 ◽  
pp. 241-244
Author(s):  
Marco Thiene ◽  
Zahra Sharif Khodaei ◽  
M.H. Aliabadi

Structural Health Monitoring (SHM) techniques have gained an increased interest to be utilised alongside NDI techniques for aircraft maintenance. However, to take the SHM methodologies from the laboratory conditions to actual structures under real load conditions requires them to be assessed in terms of reliability and robustness. In this work, a statistical analysis is carried out for a passive SHM system capable of impact detection and identification. The sensitivity of the platform to parameters such as noise, sensor failure and in-service load conditions has been investigated and reported.


Sign in / Sign up

Export Citation Format

Share Document