A New Deprocess Flow of Failure Analysis for MEMS Motion Sensor

Author(s):  
Chun-An Huang ◽  
Han-Yun Long ◽  
King-Ting Chiang ◽  
Li Chuang ◽  
Kevin Tsui

Abstract This paper demonstrates a new de-process flow for MEMS motion sensor failure analysis, using layer by layer deprocessing to locate defect points. Analysis tools used in this new process flow include IR optical microscopy, thermal system, SEM and a cutting system to de-process of MEMS motion sensor and successful observation defect points.

Author(s):  
E. Widener ◽  
S. Tatti ◽  
P. Schani ◽  
S. Crown ◽  
B. Dunnigan ◽  
...  

Abstract A new 0.5 um 1 Megabit SRAM which employed a double metal, triple poly CMOS process with Tungsten plug metal to poly /silicon contacts was introduced. During burn-in of this product, high currents, apparently due to electrical overstress, were experienced. Electrical analysis showed abnormal supply current characteristics at high voltages. Failure analysis identified the sites of the high currents of the bum-in rejects and discovered cracks in the glue layer prior to Tungsten deposition as the root cause of the failure. The glue layer cracks allowed a reaction with the poly/silicon, causing opens at the bottom of contacts. These floating nodes caused high currents and often latch-up during burn-in. Designed experiments in the wafer fab identified an improved glue layer process, which has been implemented. The new process shows improvement in burn in performance as well as outgoing product quality.


2014 ◽  
Vol 86 (9) ◽  
pp. 1542-1542
Author(s):  
B. J. M. Etzold ◽  
I. Neitzel ◽  
M. Kett ◽  
F. Strobl ◽  
V. N. Mochalin ◽  
...  

Author(s):  
Edel Arrieta ◽  
Mohammad Haque ◽  
Jorge Mireles ◽  
Calvin Stewart ◽  
Cesar Carrasco ◽  
...  

Mechanical properties of additive manufactured metal components can be affected by the orientation of the layer deposition. In this investigation, Ti–6Al–4V cylindrical specimens were fabricated by electron beam melting (EBM) at four different build angles (0 deg, 30 deg, 60 deg, and 90 deg) and tested as per ASTM E8 Standard Test Methods for Tension Testing of Metallic Materials. With the layer-by-layer fabrication suggesting granting anisotropic properties to the builds, strain fields were recorded by digital image correlation (DIC) in the search for shear effects under uniaxial loads. For the validation of this measuring method, axial strains were measured with a clip extensometer and a virtual extensometer, simultaneously. Failure analysis of the specimens at different orientations was conducted to evidence the recording of shear strain fields. The failure analysis included fractography, optical micrographs of the microstructure distribution, and failure profiles displaying different failure features associated with the layering orientation. Additionally, an experimental study case of how the failure mode of components can potentially be designed from the fabrication process is presented. At the end, remarks about the shear effects found, and an insight of the possibility of designing components by failure for safer structures are discussed.


1997 ◽  
Vol 5 (9) ◽  
pp. 8-11
Author(s):  
Joseph Rubin ◽  
Tim Hazeldine

The planarizing technique of materials lapping and polishing shows many benefits in providing samples for optical microscopy in failure analysis, quality control and related fields. A method is described below which provides both rapid and accurate micro-sections of pcb's, wafers, packaged components and other processed materials, with the use of a novel approach involving a 'calibrated' polishing base and a 'Micropositioner' head. Other benefits include the ability to halt material removal at a predetermined process endpoint and convenient sample mounting techniques.


Author(s):  
Tony Moor ◽  
Eli Malyanker ◽  
Efrat Raz-Moyal

Abstract The idea behind Destructive Semiconductor Reverse Engineering (DSRE) is to investigate a device in part or as a whole using many of the techniques employed in the physical failure analysis (PFA) field. The device is usually examined for intellectual property/patent protection or competitive analysis purposes. This paper presents a technique for the full layer-by-layer deprocessing of a single semiconductor device using purely mechanical polishing for DSRE or FA. It describes a step-by-step method developed by Raw Science/Datel Design and Development and Gatan for the reliable, purely mechanical deprocessing of individual dice. The paper presents the two modifications made to the process to virtually eliminate the edge effects. A computer controlled mechanical polishing system coupled with a unique customized process allows for the investigation of those one of a kind samples as a whole with 100% success rate.


Author(s):  
L. Forli ◽  
B. Picart ◽  
A. Reverdy ◽  
R. Schlangen

Abstract In this paper, we demonstrate that lock-in thermography (LIT) appears as a key and complementary technique for Failure Analysis across different use cases. Even if the failure requires a complex emulation setup, thanks to a specific capability of our thermal system, this kind of failure can be addressed. In our FA case study, we will show that LIT is a most efficient solution to address a bridge defect located inside a complex logic area, and furthermore that LIT highlights the defect itself and not only the consequences of the defect.


Author(s):  
Steve Wang ◽  
Frederick Duewer ◽  
Shashidar Kamath ◽  
Christopher Kelly ◽  
Alan Lyon ◽  
...  

Abstract Xradia has developed a laboratory table-top transmission x-ray microscope, TXM 54-80, that uses 5.4 keV x-ray radiation to nondestructively image buried submicron structures in integrated circuits with at better than 80 nm 2D resolution. With an integrated tomographic imaging system, a series of x-ray projections through a full IC stack, which may include tens of micrometers of silicon substrate and several layers of Cu interconnects, can be collected and reconstructed to produce a 3D image of the IC structure at 100 nm resolution, thereby allowing the user to detect, localize, and characterize buried defects without having to conduct layer by layer deprocessing and inspection that are typical of conventional destructive failure analysis. In addition to being a powerful tool for both failure analysis and IC process development, the TXM may also facilitate or supplant investigations using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam (FIB) tools, which generally require destructive sample preparation and a vacuum environment.


Sign in / Sign up

Export Citation Format

Share Document