Numerical study of transition zone between ballasted and ballastless railway track

2015 ◽  
Vol 3 ◽  
pp. 58-67 ◽  
Author(s):  
Mojtaba Shahraki ◽  
Chanaka Warnakulasooriya ◽  
Karl Josef Witt
Author(s):  
Shuai Yu ◽  
Shihui Shen ◽  
Hai Huang ◽  
Cheng Zhang

Considerable variation in the vertical displacement can cause railway tracks’ transition problems at the bridge approach. The vertical displacement gaps can result in amplification of the dynamic force and frequency, and gradually degrade the serviceability of the railway track. Many strategies, focusing on either modifying the track component or making changes to the entire structure, were used to mitigate transition problems. In particular, asphalt concrete underlayment as a structural adjustment method provides additional support to the ballast and protects the subgrade. However, its effect of reducing dynamic impact at the bridge approach is limited because asphalt mixture has a limited range of modulus and cannot make enough adjustments to the entire structure. Therefore, this paper aims to develop an engineered semi-flexible composite mixture (SFCM) design to mitigate the transition problem. The experiment showed that SFCM is a viscoelastic material with a wider modulus range, and its modulus can adjust with its air voids and the concrete slurry content. Track analysis using a 2.5D sandwich model was conducted to simulate the effects of the structure and material on the responses of the railway track under the dynamic loads and determine the arrangement of the transition zone. A four-segment transition zone design was eventually proposed for a special case of bridge approach. This method can be used to develop transition zones for achieving a smooth transition at the bridge approaches.


2013 ◽  
Vol 690-693 ◽  
pp. 2730-2733
Author(s):  
Tao Yong Zhou ◽  
Bin Hu ◽  
Bo Yan ◽  
Jun Feng Sun

Railway ballast tamping operations is employed in order to restore the geometry of railway track distorted by train traffics. The main goal is to compact the stone ballast under the sleepers supporting the railway squeezing and vibrations. The ballast compactness is the most direct index for evaluating the effect of tamping operation. This paper presents an experimental method used to detect the railway ballast compactness before and after tamping operation based on water-filling method, and creates a discrete element analysis model of railway ballast which analyzes the change of ballast compactness before and after tamping operation based on discrete element method. The simulation results are very similar with experimental results, which verify that the discrete element method is an effective method to evaluate the change of railway ballast compactness during tamping process.


Author(s):  
Kalle Karttunen ◽  
Elena Kabo ◽  
Anders Ekberg

Optimisation of railway track maintenance requires knowledge of how a deteriorated track geometry will affect subsequent loading and damage of the track. This is the scope of the current study where, in particular, the influence on track shift forces and rolling contact fatigue is investigated through numerical simulations. To this end, track geometries are obtained from field measurements. Lateral irregularities are extracted and scaled to represent different levels of geometry deterioration. Multibody simulations of dynamic train–track interaction featuring two freight wagon types are performed under different operational conditions. Track shift forces and rolling contact fatigue damage are further evaluated from simulation results. It is found that track shift forces tend to follow a normal distribution for moderate levels of lateral track geometry irregularities, and that an approximate linear relationship between standard deviations of lateral irregularities and track shift forces can be established. The relation between lateral track irregularity magnitude and rolling contact fatigue is more complex. Increasing levels of lateral irregularities will decrease the fraction of curve length affected by rolling contact fatigue for sharp curves, whereas for shallow curves it increases. As detailed in the article, this is caused by the lateral movement of the contact point as imposed by the track irregularities. Furthermore, the influence of wheel/rail friction and wear is investigated.


2018 ◽  
Vol 18 (11) ◽  
pp. 1850132 ◽  
Author(s):  
Jian Dai ◽  
Kok Keng Ang ◽  
Van Hai Luong ◽  
Minh Thi Tran ◽  
Dongqi Jiang

This paper presents a numerical study on the out-of-plane responses of a high-speed train running on a curved railway track segment using the moving element method. The accuracy and efficiency of the proposed computation model presented herein are compared with available analytical results from the literature and a finite element solver based on a simplified moving load model. Thereafter, a half-railcar moving sprung-mass model and a double-rail track-foundation model are presented to investigate the behavior of a high-speed train traversing a curved track, particularly when the train speed is greater than the design speed of the curved track segment. The results show that the train speed and severity of track irregularity significantly affect the contact forces on the rails. This paper also presents a case of a railcar overturning when the train speed is greater than 2.5 times the design speed of a curved track segment.


Author(s):  
Erdem Balcı ◽  
Niyazi Özgür Bezgin ◽  
Mohamed Wehbi

Track stiffness is an important parameter that affects railway track response. Axle spacing influences the response of the track to wheel forces and has an effect on track stiffness. Track response to train wheels within a bogie or between neighboring bogies vary in relation to their mutual interference, depending on the mechanical characteristics of the layers composing the track, axle spacing and bogie spacing. This interference affects the force-deflection characteristic of the railway track under a wheel. Dynamic impact forces caused by track and wheel roughness relate to track stiffness. Therefore, everything else being the same, two trains with different bogie spacing may generate different dynamic impact forces on the railway track. As a result, the accumulated damage to a railway track over time can relate not only to cumulative tonnage but also to the axle spacing of the trains operating on the railway track. Through superposition of the estimated track deflections by the beam-on-elastic-foundation theorem and looking at it from a new perspective, this paper discovers a set of relations between the variations of track stiffness with bogie axle spacing. The paper introduces a new concept of apparent track stiffness and hypothesizes that dynamic impact forces on the railway tracks relate to axle spacing. The paper then presents a numerical study and an analytical study that analyzes wheel and track interaction along stiffness transition zones for different values of axle spacing and shows that bogie axle spacing has an effect on dynamic impact forces on railway tracks.


2011 ◽  
Vol 117-119 ◽  
pp. 299-302
Author(s):  
Wei Fang Xu ◽  
Xi Cheng Huang ◽  
Zhi Ming Hao ◽  
Yang Wang ◽  
Yuan Ming Xia ◽  
...  

In penetration problems, the heterogeneity of the concrete would affect the ballistic responses. The presented paper studied the influence by numerical method. During the analysis, the concrete was defined as “numerical concrete”, which was composed with different size aggregates randomly included in the mortar. In the numerical concrete, the ITZ (interfacial transition zone) was replaced with the connected strength (tensile strength and shear strength). Based on the validation of the mesh, the ballistic responses were studied. From the study, it was concluded that: the randomly-distributed aggregates affected the stress symmetry which changed the missile trace, which couldn’t be alternated by concrete in the homogeneous model, and that the residual velocity of the missile decreased with the increase of the connected strength of the interfaces.


Author(s):  
Xiao Liang ◽  
Minghui Zheng

Railway track vertical alignment is an important indicator of serviceability condition and thus plays a critical role for maintenance planning. Estimating the rail profile through the vertical acceleration readings provides an efficient alternative to the current practice of optical methods using special vehicles. This paper proposes an algorithm to estimate the rail vertical profile using the vertical acceleration of the vehicle resulting from the train-track dynamic interaction. The algorithm is designed to approximate the inverse of the transfer function from the rail vertical roughness to the train’s measured acceleration. The approximation problem is formulated into an H-infinity optimal control design problem, which can be further transferred into a problem of convex optimization. The proposed algorithm possesses several advantages including easy design, little tuning effort, and low computational cost. In addition, to take into account the model uncertainty, an optimization-based learning framework is proposed to further enhance the performance of the proposed algorithm. The numerical study has been conducted comprehensively to validate the observer’s properties and effectiveness in reconstructing of the rail vertical roughness.


Author(s):  
Valery G. Khaidukov ◽  
Vadim V. Lisitsa ◽  
Vladimir A. Tcheverda* ◽  
Galina V. Reshetova

Sign in / Sign up

Export Citation Format

Share Document