scholarly journals Development and experimental testing of a compact thermal energy storage tank using paraffin targeting domestic hot water production needs

2020 ◽  
Vol 19 ◽  
pp. 100573 ◽  
Author(s):  
George Dogkas ◽  
John Konstantaras ◽  
Maria K. Koukou ◽  
Michail Gr. Vrachopoulos ◽  
Christos Pagkalos ◽  
...  
2012 ◽  
Vol 97 ◽  
pp. 897-906 ◽  
Author(s):  
M.C. Rodríguez-Hidalgo ◽  
P.A. Rodríguez-Aumente ◽  
A. Lecuona ◽  
M. Legrand ◽  
R. Ventas

Author(s):  
Michael J. Kazmierczak ◽  
Sreenidhi Krishnamoorthy ◽  
Abhishek Gupta

Experiments were performed to charge either cold or hot water thermal energy storage tanks using a heat exchanger equipped with multiple thermoelectric (TE) modules. The primary objective was to design a simple, but effective, modular Peltier heat pump system component to provide chilled or hot water for domestic use at the appliance level, and when arranged in multiple unit combinations, a system that can potentially satisfy small home cooling and heating requirements. Moreover, when the TEs are directly energized using solar PV panels, the system provides a renewable, pollution free and off-the-grid solution to supplement home energy needs. The present work focuses on the design and testing of a thermoelectric heat exchanger component that consists of two water channels machined from two aluminum plates with an array of three or five thermoelectric modules placed in between to transiently cool and/or heat the water in the thermal energy storage tank. The water passing over either the cold or hot side of the TE modules is recirculated to charge the cold or hot thermal storage tank, respectively. The temperatures in the prototype Peltier heat exchanger test component and thermal energy water storage tank were measured during both cold tank charging and hot tank charging operation. The thermal efficiencies of TE heat pump cooling/heating system are reported. The effects of TE power input, number of TE units and rate of fluid flow are studied.


2020 ◽  
Vol 10 (21) ◽  
pp. 7873
Author(s):  
Johann Emhofer ◽  
Klemens Marx ◽  
Tilman Barz ◽  
Felix Hochwallner ◽  
Luisa F. Cabeza ◽  
...  

Integration of a three-media refrigerant/phase change material (PCM)/water heat exchanger (RPW-HEX) in the hot superheated section of a heat pump (HP) system is a promising approach to save energy for domestic hot water (DHW) generation in multi-family houses. The RPW-HEX works as a desuperheater and as a latent thermal energy storage in the system. The latent thermal energy storage is charged during heating and cooling operation and discharged for DHW production. For this purpose, the water side of the RPW-HEX is connected to decentralized DHW storage devices. DHW consumption, building standards and climate, energy prices, material costs, and production costs are the constraints for the selection of the optimal storage size and RPW-HEX design. This contribution presents the techno-economic analysis of the RPW-HEX integrated into an R32 air source HP. With the aid of experimentally validated dynamic computer models, the optimal sizing of the RPW-HEX storage is discussed to maximize energy savings and to minimize the investment costs. The results are discussed in the context of a return of investment analysis, practical implementation aspects and energetic potential of the novel technology.


2019 ◽  
Vol 116 ◽  
pp. 00016
Author(s):  
George Dogkas ◽  
John Konstantaras ◽  
Maria K. Koukou ◽  
Vassilis N. Stathopoulos ◽  
Luis Coelho ◽  
...  

A full-scale thermal energy storage system using phase change materials (PCM) is experimentally investigated for solar and geothermal applications. The system consists of a rectangular tank filled with PCM and a staggered fin tube heat exchanger (HE). The system is designed for the production of Domestic Hot Water (DHW) based on the EU Commission Regulation No 814/2013 [1] requirements. The characteristics that are studied are the stored energy density of the system, the heat transfer rate through the HE during the charging and discharging processes, the adequacy of produced hot water amount and the storage efficiency of the tank. The results of the experiments confirmed the potential of the system to meet several prerequisites of a DHW installation and in addition to make the operation of the coupled solar collector or ground heat pump efficient.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1158 ◽  
Author(s):  
Mohd Amin Abd Majid ◽  
Masdi Muhammad ◽  
Chima Cyril Hampo ◽  
Ainul Bt Akmar

This study’s primary goal is to evaluate the performance of a large thermal energy storage tank installed in a Gas District Cooling (GDC) plant. The performance parameters considered in this study include thermocline thickness (WTc), Cumulated Charge (Qcum), and Half Figure of Merit (½ FOM). The operation sensor data of a large Thermal Energy Storage (TES) tank was acquired for this analysis. The recorded temperature sensor from the 1st to 7th January and from 12th to 17th October 2019 was considered in this research. GraphPad prism computer software was deployed for analyses, and the temperature distribution data were analyzed to determine the four temperature parameters (hot water temperature (Th), cool water temperature (Tc), cool water depth (C), and slope gradient (S)) using a non-linear regression curve fitting technique and sigmoid Dose Responses function as integrated with the software. At the end of this research, the relationship between the growth of the determined performance parameter with charging hours was analyzed and presented. The research results proved the ability of GraphPad Prism software to assess the temperature distribution in the TES tank and also the corresponding effects on the overall Tank performance. The software offers better advantages in evaluating the performance parameter of the TES tank accurately.


Sign in / Sign up

Export Citation Format

Share Document