High-energy ion beam implantation of hydroxyapatite thin films grown on TiN and ZrO2 inter-layers by pulsed laser deposition

2004 ◽  
Vol 453-454 ◽  
pp. 208-214 ◽  
Author(s):  
V. Nelea ◽  
H. Pelletier ◽  
P. Mille ◽  
D. Muller
1992 ◽  
Vol 7 (10) ◽  
pp. 2639-2642 ◽  
Author(s):  
R.K. Singh ◽  
Deepika Bhattacharya ◽  
S. Sharan ◽  
P. Tiwari ◽  
J. Narayan

We have fabricated Ni3Al and NiAl thin films on different substrates by the pulsed laser deposition (PLD) technique. A high energy nanosecond laser beam was directed onto Ni–Al (NiAl, Ni3Al) targets, and the evaporated material was deposited onto substrates placed parallel to the target. The substrate temperature was varied between 300 and 400 °C, and the substrate-target distance was maintained at approximately 5 cm. The films were analyzed using scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and Rutherford backscattering spectrometry. At energy densities slightly above the evaporation threshold, a slight enrichment of Al was observed, while at higher energy densities the film stoichiometry was close (<5%) to the target composition. Barring a few particles, the surface of the films exhibited a smooth morphology. X-ray and TEM results corroborated the formation of Ni3Al and NiAl films from similar target compositions. These films were characterized by small randomly oriented grains with grain size varying between 200 and 400 Å.


2019 ◽  
Vol 3 (9) ◽  
pp. 55-63 ◽  
Author(s):  
Antonello Tebano ◽  
Carmela Aruta ◽  
Pier Gianni Medaglia ◽  
Giuseppe Balestrino ◽  
Norberto G. Boggio ◽  
...  

1993 ◽  
Vol 327 ◽  
Author(s):  
Randolph E. Treece ◽  
James S. Horwitz ◽  
Douglas B. Chrisey

AbstractThin films of diamond and diamond-like carbon (DLC) are technologically important materials that serve as hard, scratch resistant and chemically inert coatings for tools and optics. Recent calculations suggest that β-C3N4 should be harder than diamond. We have deposited carbon nitride (CNx) thin films by pulsed laser deposition. The films were grown from a graphite target in a nitrogen background. The nitrogen source was either (a) a N2 gas atmosphere, or (b) a N2+/N+ ion beam generated by a Kaufman ion gun. A wide range of deposition parameters were investigated, such as deposition pressure (0.3-900 mTorr N2), substrate temperature (50 and 600°C), and laser fluence (1-4 J/cm2) and laser repetition rate (1-10 Hz). The films have been characterized by Rutherford Backscattering Spectroscopy, thin-film X-ray diffraction, scanning electron microscopy, and micro-Raman spectroscopy. In general, the films were nitrogen deficient with a maximum nitrogen to carbon ratio (N/C) of 0.45 and a shift in the G band Raman peak consistent with amorphous CNx (a-CNx).


2002 ◽  
Vol 186 (1-4) ◽  
pp. 483-489 ◽  
Author(s):  
V Nelea ◽  
H Pelletier ◽  
D Müller ◽  
N Broll ◽  
P Mille ◽  
...  

2007 ◽  
Vol 16 (8) ◽  
pp. 1579-1585 ◽  
Author(s):  
Z.F. Ying ◽  
D. Yu ◽  
H. Ling ◽  
N. Xu ◽  
Y.F. Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document