Poly-Si films with long carrier lifetime prepared by rapid thermal annealing of Cat-CVD amorphous silicon thin films

2008 ◽  
Vol 516 (5) ◽  
pp. 600-603 ◽  
Author(s):  
Keisuke Ohdaira ◽  
Yuki Abe ◽  
Makoto Fukuda ◽  
Shogo Nishizaki ◽  
Noritaka Usami ◽  
...  
2014 ◽  
Vol 1666 ◽  
Author(s):  
Tomohiko Nakamura ◽  
Shinya Yoshidomi ◽  
Masahiko Hasumi ◽  
Toshiyuki Sameshima ◽  
Tomohisa Mizuno

ABSTRACTWe report crystallization of amorphous silicon (a-Si) thin films and improvement of thin film transistors (TFTs) characteristics using 2.45 GHz microwave heating assisted with carbon powders. Undoped 50-nm-thick a-Si films were formed on quartz substrates and heated by microwave irradiation for 2, 3, and 4 min. Raman scattering spectra revealed that the crystalline volume ratio increased to 0.42 for the 4-min heated sample. The dark and photo electrical conductivities measured by Air mass 1.5 at 100 mW/cm2 were 2.6x10-6 and 5.2x10-6 S/cm in the case of 4-min microwave heating followed by 1.3x106-Pa-H2O vapor heat treatment at 260°C for 3 h. N channel polycrystalline silicon TFTs characteristics were improved by the combination of microwave heating with high-pressure H2O vapor heat treatment. The threshold voltage decreased from 5.3 to 4.2 V and the effective carrier mobility increased from 18 to 25 cm2/Vs.


1987 ◽  
Vol 103 ◽  
Author(s):  
Menachem Nathan

ABSTRACTA general scheme for determining which metal-Si systems undergo solidphase amorphization (SPA) upon rapid thermal annealing is presented and used to investigate Ni-Si, Ti-Si, V-Si, Co-Si and Cr-Si reactions. SPA occurs only in the first three systems. With the glaring exception of Co-Si, the results agree with the thermodynamic predictions of SPA in systems in which the free energy of a glassy phase is significantly lower than the free energy of the separate components. The amorphization may also be influenced by the diffusing species and contamination. Following SPA, the first crystalline compound is determined by nucleation kinetics.


1996 ◽  
Vol 441 ◽  
Author(s):  
Byung-Il Lee ◽  
Kwang-Ho Kim ◽  
Won-Cheol Jeong ◽  
Pyung-Su Ahn ◽  
Jin-Wook Shin ◽  
...  

AbstractBasic mechanisms for both Ni- and Pd-metal induced lateral crystallization (MILC) are investigated. For both cases, tiny silicides were formed under the metal deposited area, and propagated toward amorphous Si films leaving crystallized Si behind at temperatures as low as 500 °C. Ni-MILC was influenced by Pd such that the lateral crystallization rate was enhanced, and the temperature for the lateral crystallization was lowered to 450 °C. Through TEM analysis and external stress experiments, it was found that the enhancement of the lateral crystallization rate was closely related to the compressive stress generated by the formation of nearby Pd2Si.


1992 ◽  
Vol 283 ◽  
Author(s):  
L. Lusson ◽  
P. Elkaim ◽  
M. Cuniot ◽  
D. Ballutaud ◽  
R. Rizk ◽  
...  

ABSTRACTSuccessive deuterium diffusion and effusion experiments are performed on undoped microcrystalline silicon obtained from thermally crystallized sputtered amorphous silicon thin films. The effect of prior incorporation of deuterium during the amorphous film growth on the crystallization mechanism and on the microcrystalline film quality is probed by the use of the post hydrogenation procedure. In connection with the deuterium solubility as provided by secondary ion mass spectroscopy (SIMS) profiling, the analysis of the effusion spectra suggests the existence of large cavities in the crystallized a-Si:D films, containing most probably molecular hydrogen. They are absent in the corresponding crystallized non-deuterated a-Si films. Other deuterium configurations seem to be present in both kinds of samples such as weakly bonded deuterium in small clusters and at grain boundaries.


2017 ◽  
Vol 32 (2) ◽  
pp. 025007 ◽  
Author(s):  
Yong Chan Jung ◽  
Sejong Seong ◽  
Taehoon Lee ◽  
Jinho Ahn ◽  
Tae Hyun Kim ◽  
...  

1989 ◽  
Vol 65 (5) ◽  
pp. 2069-2072 ◽  
Author(s):  
R. Kakkad ◽  
J. Smith ◽  
W. S. Lau ◽  
S. J. Fonash ◽  
R. Kerns

2010 ◽  
Vol 1245 ◽  
Author(s):  
Pei-Yi Lin ◽  
Ping-Jung Wu ◽  
I-Chen Chen

AbstractHydrogenated amorphous silicon (a-Si:H) thin films were deposited on pre-oxidized Si wafers by electron cyclotron resonance chemical vapor deposition (ECRCVD). The rapid thermal annealing (RTA) treatments were applied to the as-grown samples in nitrogen atmosphere, and the temperature range for the RTA process is from 450 to 950 °C. The crystallization and grain growth behaviors of the annealed films were investigated by Raman spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The onset temperature for the crystallization and grain growth is around 625 ∼ 650°C. The crystalline fraction of annealed a-Si:H films can reach ∼80%, and a grain size up to 17 nm could be obtained from the RTA treatment at 700 °C. We found that the crystallization continues when the grain growth has stopped.


Sign in / Sign up

Export Citation Format

Share Document