Scanning probe study on the photovoltaic characteristics of a Si solar cell by using Kelvin force microscopy and photoconductive atomic force microscopy

2013 ◽  
Vol 546 ◽  
pp. 353-357 ◽  
Author(s):  
Jinhee Heo ◽  
Soonho Won
2021 ◽  
Vol 3 ◽  
Author(s):  
I.V. Yaminsky ◽  

The article is devoted to the study of viruses and bacteria using a scanning probe microscope in the atomic force microscopy mode, in particular, to the question, what data can be obtained using this method and how to interpret it.


Nanophotonics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1659-1671
Author(s):  
Nusrat Jahan ◽  
Hanwei Wang ◽  
Shensheng Zhao ◽  
Arkajit Dutta ◽  
Hsuan-Kai Huang ◽  
...  

AbstractScanning probe techniques have evolved significantly in recent years to detect surface morphology of materials down to subnanometer resolution, but without revealing spectroscopic information. In this review, we discuss recent advances in scanning probe techniques that capitalize on light-induced forces for studying nanomaterials down to molecular specificities with nanometer spatial resolution.


2014 ◽  
Vol 5 ◽  
pp. 26-35 ◽  
Author(s):  
Tian Tian ◽  
Burapol Singhana ◽  
Lauren E Englade-Franklin ◽  
Xianglin Zhai ◽  
T Randall Lee ◽  
...  

The solution self-assembly of multidentate organothiols onto Au(111) was studied in situ using scanning probe nanolithography and time-lapse atomic force microscopy (AFM). Self-assembled monolayers (SAMs) prepared from dilute solutions of multidentate thiols were found to assemble slowly, requiring more than six hours to generate films. A clean gold substrate was first imaged in ethanolic media using liquid AFM. Next, a 0.01 mM solution of multidentate thiol was injected into the liquid cell. As time progressed, molecular-level details of the surface changes at different time intervals were captured by successive AFM images. Scanning probe based nanofabrication was accomplished using protocols of nanografting and nanoshaving with n-alkanethiols and a tridentate molecule, 1,1,1-tris(mercaptomethyl)heptadecane (TMMH). Nanografted patterns of TMMH could be inscribed within n-alkanethiol SAMs; however, the molecular packing of the nanopatterns was less homogeneous compared to nanopatterns produced with monothiolates. The multidentate molecules have a more complex assembly pathway than monothiol counterparts, mediated by sequential steps of forming S–Au bonds to the substrate.


Sign in / Sign up

Export Citation Format

Share Document