Effects of input power, gas flow rate and hydrogen concentration on Cu film deposition by a radio frequency driven non-thermal atmospheric pressure plasma jet

2018 ◽  
Vol 660 ◽  
pp. 493-498 ◽  
Author(s):  
Q.J. Guo ◽  
G.H. Ni ◽  
L. Li ◽  
Q.F. Lin ◽  
Y.J. Zhao ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 354 ◽  
Author(s):  
Mehrnoush Narimisa ◽  
František Krčma ◽  
Yuliia Onyshchenko ◽  
Zdenka Kozáková ◽  
Rino Morent ◽  
...  

In this work, the potential of a microwave (MW)-induced atmospheric pressure plasma jet (APPJ) in film deposition of styrene and methyl methacrylate (MMA) precursors is investigated. Plasma properties during the deposition and resultant coating characteristics are studied. Optical emission spectroscopy (OES) results indicate a higher degree of monomer dissociation in the APPJ with increasing power and a carrier gas flow rate of up to 250 standard cubic centimeters per minute (sccm). Computational fluid dynamic (CFD) simulations demonstrate non-uniform monomer distribution near the substrate and the dependency of the deposition area on the monomer-containing gas flow rate. A non-homogeneous surface morphology and topography of the deposited coatings is also observed using atomic force microscopy (AFM) and SEM. Coating chemical analysis and wettability are studied by XPS and water contact angle (WCA), respectively. A lower monomer flow rate was found to result in a higher C–O/C–C ratio and a higher wettability of the deposited coatings.


2021 ◽  
Vol 19 (48) ◽  
pp. 44-51
Author(s):  
Saba Jawad Kadhem

     In this manuscript has investigated the synthesis of plasma-polymerized pyrrole (C4H5N) nano-particles prepared by the proposed atmospheric pressure nonequilibrium plasma jet through the parametric studies, particularly gas flow rate (0.5, 1 and 1.5 L/min). The plasma jet which used operates with alternating voltage 7.5kv and frequency 28kHz. The plasma-flow characteristics were investigated based on optical emission spectroscopy (OES). UV-Vis spectroscopy was used to characterize the  oxidization  state for polypyrrole. The major absorption appears around 464.1, 449.7 and 435.3  nm at the three flow rate of argon gas. The chemical composition and structural properties of the contained samples which synthesized at 0.5 L/min as a argon flow rate were analyzed by scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), Raman spectroscopy and X-ray diffraction (XRD). SEM point to a uniform distribution of polypyrrole (PPY) nanoparticles matrix. XRD technique showed a semicrystalline pattern for PPY)thin film. It is expected, that the high-quality plasma polymer grown by atmospheric pressure plasma jet method contributes to serving as conducting materials.


2019 ◽  
Vol 12 (3) ◽  
pp. 036001 ◽  
Author(s):  
Kotaro Ogawa ◽  
Hideki Yajima ◽  
Jun-Seok Oh ◽  
Hiroshi Furuta ◽  
Akimitsu Hatta

Plasma ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 283-293 ◽  
Author(s):  
Bolouki ◽  
Hsieh ◽  
Li ◽  
Yang

A helium-based atmospheric pressure plasma jet (APPJ) with various flow rates of argon gas as a variable working gas was characterized by utilizing optical emission spectroscopy (OES) alongside the plasma jet. The spectroscopic characterization was performed through plasma exposure in direct and indirect interaction with and without de-ionized (DI) water. The electron density and electron temperature, which were estimated by Stark broadening of atomic hydrogen (486.1 nm) and the Boltzmann plot, were investigated as a function of the flow rate of argon gas. The spectra obtained by OES indicate that the hydroxyl concentrations reached a maximum value in the case of direct interaction with DI water as well as upstream of the plasma jet for all cases. The relative intensities of hydroxyl were optimized by changing the flow rate of argon gas.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Hom Bahadur Baniya ◽  
Rajendra Shrestha ◽  
Rajesh Prakash Guragain ◽  
Mohan Bahadur Kshetri ◽  
Bishnu Prasad Pandey ◽  
...  

An atmospheric-pressure plasma jet (APPJ) has a lot of applications in recent years such as in material processing, surface modification, biomedical material processing, and thin film deposition. APPJ has been generated by a high-voltage power supply (0-20 kV) at an operating frequency of 27 kHz. This paper reports the generation and characterization of APPJ in argon environment and its application in the surface modification of polyethylene terephthalate (PET). The plasma jet has been characterized by electrical and optical methods. In order to characterize the plasma jet, electron density and electron temperature have been determined. The surface roughness of the untreated and plasma-treated PET samples was characterized by contact angle measurement, surface energy analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM).


2016 ◽  
Vol 23 (6) ◽  
pp. 063523 ◽  
Author(s):  
M. Hasnain Qaisrani ◽  
Yubin Xian ◽  
Congyun Li ◽  
Xuekai Pei ◽  
Maede Ghasemi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document