Effect of bias voltage on mechanical properties, milling performance and thermal crack propagation of cathodic arc ion-plated TiAlN coatings

2020 ◽  
Vol 708 ◽  
pp. 138116 ◽  
Author(s):  
Biaochun Zhao ◽  
Xiaoxiao Zhao ◽  
Liangliang Lin ◽  
Lingli Zou
Wear ◽  
2018 ◽  
Vol 404-405 ◽  
pp. 50-61 ◽  
Author(s):  
G. Skordaris ◽  
K.-D. Bouzakis ◽  
P. Charalampous ◽  
T. Kotsanis ◽  
E. Bouzakis ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jinlong Jiang ◽  
Qiong Wang ◽  
Yubao Wang ◽  
Zhang Xia ◽  
Hua Yang ◽  
...  

The titanium- and silicon-codoped a-C:H films were prepared at different applied bias voltage by magnetron sputtering TiSi target in argon and methane mixture atmosphere. The influence of the applied bias voltage on the composition, surface morphology, structure, and mechanical properties of the films was investigated by XPS, AFM, Raman, FTIR spectroscopy, and nanoindenter. The tribological properties of the films were characterized on an UMT-2MT tribometer. The results demonstrated that the film became smoother and denser with increasing the applied bias voltage up to −200 V, whereas surface roughness increased due to the enhancement of ion bombardment as the applied bias voltage further increased. The sp3carbon fraction in the films monotonously decreased with increasing the applied bias voltage. The film exhibited moderate hardness and the superior tribological properties at the applied bias voltage of −100 V. The tribological behaviors are correlated to the H/E or H3/E2ratio of the films.


2021 ◽  
Author(s):  
Bobillier Gregoire ◽  
Bergfled Bastian ◽  
Gaume Johan ◽  
van Herwijnen Alec ◽  
Schweizer Jürg

<p>Dry-snow slab avalanche release is a multi-scale process starting with the formation of localized failure in a highly porous weak snow layer below a cohesive snow slab, which can be followed by rapid crack propagation within the weak layer. Finally, a tensile fracture through the slab leads to its detachment. About 15 years ago, the propagation saw test (PST) was developed. The PST is a fracture mechanical field test that provides information on crack propagation propensity in weak snowpack layers. It has become a valuable research tool to investigate the processes involved in crack propagation. While this has led to a better understanding of the onset of crack propagation, much less is known about the ensuing propagation dynamics. Here, we use the discrete element method to numerically simulate PSTs in 3D and analyze the fracture dynamics using a micro-mechanical approach. Our DEM model reproduced the observed PST behavior extracted from experimental analysis. We developed different indicators to define the crack tip that allowed deriving crack speed. Our results show that crack propagation in level terrain reaches a stationary speed if the snow column is long enough. Moreover, we define stress concentration sections. Their length evolution during crack propagation suggests the development of a steady-state stress regime. Slab and weak layer elastic modulus, as well as weak layer shear strength, are the key input parameters for modeling crack propagation; they affect stress concentrations, crack speed, and the critical length for the onset of crack propagation. The results of our sensitivity study highlight the effect of these mechanical parameters on the emergence of a steady-state propagation regime and consequences for dry-snow slab avalanche release. Our DEM approach opens the possibility for a comprehensive study on the influence of the snowpack mechanical properties on the fundamental processes for avalanche release.</p>


Sign in / Sign up

Export Citation Format

Share Document