Longitudinal deformation profile of a tunnel in weak rock mass by using the back analysis method

2018 ◽  
Vol 71 ◽  
pp. 478-493 ◽  
Author(s):  
Yanbin Luo ◽  
Jianxun Chen ◽  
Yi Chen ◽  
Pengsheng Diao ◽  
Xiong Qiao
2014 ◽  
Vol 1020 ◽  
pp. 423-428 ◽  
Author(s):  
Eva Hrubesova ◽  
Marek Mohyla

The paper deals with the back analysis method in geotechnical engineering, that goal is evaluation the more objective and reliable parameters of the rock mass on the basis of in-situ measurements. Stress, deformational, strength and rheological parameters of the rock mass are usually determined by some inaccuracies and errors arising from the complexity and variability of the rock mass. This higher or lower degree of imprecision is reflected in the reliability of the mathematical modelling results. The paper presents the utilization of direct optimization back analysis method, based on the theory of analytical functions of complex variable and Kolosov-Muschelischvili relations, to the evaluation of initial stress state inside the rock massif.


2019 ◽  
Vol 79 (4) ◽  
pp. 1919-1937 ◽  
Author(s):  
Lena Selen ◽  
Krishna Kanta Panthi ◽  
Gunnar Vistnes

AbstractWater tunnels built for hydropower passing through weak and heterogeneous rock mass pose challenges associated to slaking and disintegration, as they are first exposed to dry condition during excavation and are then filled with water to produce hydropower energy. Over the period of operational life, these tunnels are drained periodically for inspections and repair leading to drainage and filling cycles. The weakening of rock mass caused by cycles of drying, saturation and drainage may lead to the propagation of instabilities in the tunnels. Therefore, it is important to study the slaking and disintegration behavior of the weak rock mass consisting of clay and clay-like minerals. This paper assesses the mineralogical composition of flysch and serpentinite from the headrace tunnel of Moglicë Hydropower Project in Albania. Further, to determine the slaking and disintegration behavior of these rocks, extensive testing using both the ISRM, Int J Rock Mech Min Sci Geomech Abstr 16(2):143-151, (1979) suggested test method and a modified variant of this test are performed. Finally, comprehensive assessments, discussions and comparisons are made. It is found that the modified slake durability test better suits for the tunnels built as water conveying systems such as hydropower tunnels.


Sign in / Sign up

Export Citation Format

Share Document