Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier

2019 ◽  
Vol 90 ◽  
pp. 12-18 ◽  
Author(s):  
Yuanyuan Pu ◽  
Derek B. Apel ◽  
Huawei Xu
2020 ◽  
Author(s):  
Lewis Mervin ◽  
Avid M. Afzal ◽  
Ola Engkvist ◽  
Andreas Bender

In the context of bioactivity prediction, the question of how to calibrate a score produced by a machine learning method into reliable probability of binding to a protein target is not yet satisfactorily addressed. In this study, we compared the performance of three such methods, namely Platt Scaling, Isotonic Regression and Venn-ABERS in calibrating prediction scores for ligand-target prediction comprising the Naïve Bayes, Support Vector Machines and Random Forest algorithms with bioactivity data available at AstraZeneca (40 million data points (compound-target pairs) across 2112 targets). Performance was assessed using Stratified Shuffle Split (SSS) and Leave 20% of Scaffolds Out (L20SO) validation.


2020 ◽  
Vol 15 ◽  
Author(s):  
Shuwen Zhang ◽  
Qiang Su ◽  
Qin Chen

Abstract: Major animal diseases pose a great threat to animal husbandry and human beings. With the deepening of globalization and the abundance of data resources, the prediction and analysis of animal diseases by using big data are becoming more and more important. The focus of machine learning is to make computers learn how to learn from data and use the learned experience to analyze and predict. Firstly, this paper introduces the animal epidemic situation and machine learning. Then it briefly introduces the application of machine learning in animal disease analysis and prediction. Machine learning is mainly divided into supervised learning and unsupervised learning. Supervised learning includes support vector machines, naive bayes, decision trees, random forests, logistic regression, artificial neural networks, deep learning, and AdaBoost. Unsupervised learning has maximum expectation algorithm, principal component analysis hierarchical clustering algorithm and maxent. Through the discussion of this paper, people have a clearer concept of machine learning and understand its application prospect in animal diseases.


2021 ◽  
pp. 1-1
Author(s):  
Hai Yang ◽  
Lizao Zhang ◽  
Tao Luo ◽  
Haibo Liang ◽  
Li Li ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 133
Author(s):  
Hao Sun ◽  
Yajing Cui

Downscaling microwave remotely sensed soil moisture (SM) is an effective way to obtain spatial continuous SM with fine resolution for hydrological and agricultural applications on a regional scale. Downscaling factors and functions are two basic components of SM downscaling where the former is particularly important in the era of big data. Based on machine learning method, this study evaluated Land Surface Temperature (LST), Land surface Evaporative Efficiency (LEE), and geographical factors from Moderate Resolution Imaging Spectroradiometer (MODIS) products for downscaling SMAP (Soil Moisture Active and Passive) SM products. This study spans from 2015 to the end of 2018 and locates in the central United States. Original SMAP SM and in-situ SM at sparse networks and core validation sites were used as reference. Experiment results indicated that (1) LEE presented comparative performance with LST as downscaling factors; (2) adding geographical factors can significantly improve the performance of SM downscaling; (3) integrating LST, LEE, and geographical factors got the best performance; (4) using Z-score normalization or hyperbolic-tangent normalization methods did not change the above conclusions, neither did using support vector regression nor feed forward neural network methods. This study demonstrates the possibility of LEE as an alternative of LST for downscaling SM when there is no available LST due to cloud contamination. It also provides experimental evidence for adding geographical factors in the downscaling process.


2013 ◽  
Vol 842 ◽  
pp. 746-749
Author(s):  
Bo Yang ◽  
Liang Zhang

A novel sparse weighted LSSVM classifier is proposed in this paper, which is based on Suykens weighted LSSVM. Unlike Suykens weighted LSSVM, the proposed weighted method is more suitable for classification. The distance between sample and classification border is used as the sample importance measure in our weighted method. Based on this importance measure, a new weight calculating function, using which can adjust the sparseness of weight, is designed. In order to solve the imbalance problem, a kind of normalization weights calculating method is proposed. Finally, the proposed method is used on digit recognition. Comparative experiment results show that the proposed sparse weighted LSSVM can improve the recognition correct rate effectively.


2003 ◽  
Vol 15 (9) ◽  
pp. 2227-2254 ◽  
Author(s):  
Wei Chu ◽  
S. Sathiya Keerthi ◽  
Chong Jin Ong

This letter describes Bayesian techniques for support vector classification. In particular, we propose a novel differentiable loss function, called the trigonometric loss function, which has the desirable characteristic of natural normalization in the likelihood function, and then follow standard gaussian processes techniques to set up a Bayesian framework. In this framework, Bayesian inference is used to implement model adaptation, while keeping the merits of support vector classifier, such as sparseness and convex programming. This differs from standard gaussian processes for classification. Moreover, we put forward class probability in making predictions. Experimental results on benchmark data sets indicate the usefulness of this approach.


Sign in / Sign up

Export Citation Format

Share Document