Dust removal effect of negatively-pressured spraying collector for advancing support in fully mechanized coal mining face: Numerical simulation and engineering application

2020 ◽  
Vol 95 ◽  
pp. 103149 ◽  
Author(s):  
Gang Zhou ◽  
Qingtao Zhang ◽  
Yingying Hu ◽  
Danhong Gao ◽  
Shicong Wang ◽  
...  
2013 ◽  
Vol 807-809 ◽  
pp. 2288-2293 ◽  
Author(s):  
Xiang Qian Wang ◽  
Xiang Rui Meng ◽  
Zhao Ning Gao

Based upon the engineering background of IV315 coal mining face of Mengzhuang Coal Mine, the numerical simulation software UDEC is used to analyze rational packing width under the conditions of different filling widths on the driving roadway. The rational coal pillar size is initially decided as 2.0 meters through simulating and analyzing. On this basis, the influence of second mining on the retaining roadway was analyzed by numerical simulation. Combined with the field measurement, the support parameters and the 2.0 meters packing width are proven to be rational, which provides a reference for the coal mining faces with similar conditions.


2020 ◽  
Vol 45 (11) ◽  
pp. 9815-9833
Author(s):  
Guodong Zhai ◽  
Wentao Zhang ◽  
Yaozong Li ◽  
Xinghao Lu ◽  
Wenyuan Hu

AbstractIn order to effectively reduce the coal dust concentration in a fully mechanized mining face, this research used laboratory experiment, numerical simulation, and field test to conduct an in-depth exploration of the ejector precipitator installed at the low-level caving coal hydraulic support. Firstly, through the experimental platform in the laboratory, the dust removal effect of the nozzle with different structural parameters was tested, and the 3D particle dynamic analyzer was adopted to verify its atomization characteristics; then, the structural parameters corresponding to the nozzle in the best test results were obtained. Secondly, by using Fluent, the negative pressure flow field in the ejector barrel was numerically simulated. The results indicated that when the pressure of supply water was 12 MPa, the negative pressure value formed in the flow field was the lowest and the inspiratory velocity was the largest, which was conducive to dust removal. Finally, the tests of liquid–gas ratio and dust removal ratio were carried out in a fully mechanized mining face. The results showed that when the nozzle specification recommended by the experiment and the pressure of supply water recommended by the numerical simulation were used, the removal ratios of the total coal dust and the respirable coal dust were 89.5% and 91.0%, respectively, at the measuring point of the highest coal dust concentration. It indicates that the ejector precipitator has a good application effect in reducing the coal dust concentration in a fully mechanized mining face and improving the work environment of coal mine workers.


2011 ◽  
Vol 243-249 ◽  
pp. 2596-2600
Author(s):  
Xiao Li Du ◽  
Hong Wei Song ◽  
Jie Chen

Based on numerical simulation of computing Software ANSYS, the curve of arching coefficient variation of pressure arch due to actual mining was analyzed aiming to a special mining face, the law of stress transfer and change in surrounding rock was discussed, and the evolving features and characteristics of pressure arch was obtained. The analysis and discussion show the following facts: Arch body will become thicker and stress in the arch body increases with working face’s driving distance increasing; the morphology of pressure arch transits from ellipsoid with long axis in the vertical direction to ellipsoid with long axis in the horizontal direction along the trend of working face; along the tendency of working face, the morphology of pressure arch is a ellipsoid with long axis in the vertical direction.


2011 ◽  
Vol 201-203 ◽  
pp. 2212-2215 ◽  
Author(s):  
Jing Yuan Chen ◽  
Xiu Qin Fan ◽  
Zheng Liu

For the problem of gas accumulation in upper corner of "U" type ventilation system mining face, a new approach to eliminating gas accumulation in upper corner of coal mining face by using high-speed rotating jet is proposed based on flow law of rotary jet and actual environment of coal mining face. The numerical simulation with Fluent software is carried out. The results show that when fan is mounted close to the wall, the high-speed rotating jet has good Coanda effect, little impact on air flow structure of coal mining face, and is significantly effective to deal with gas accumulation in upper corner. FLUENT based numerical simulation provides a theoretical basis for actual application of rotary jet fan in coal mining face.This template explains and demonstrates how to prepare your camera-ready paper for Trans Tech Publications. The best is to read these instructions and follow the outline of this text.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yijie Shi ◽  
Pengfei Wang ◽  
Ronghua Liu ◽  
Xuanhao Tan ◽  
Wen Zhang

Coalbed water injection is the most basic and effective dust-proof technology in the coal mining face. To understand the influence of coalbed water injection process parameters and coalbed characteristic parameters on coal wetting radius, this paper uses Fluent computational fluid dynamics software to systematically study the seepage process of coalbed water injection under different process parameters and coalbed characteristic parameters, calculation results of which are applied to engineering practice. The results show that the numerical simulation can help to predict the wetness range of coalbed water injection, and the results can provide guidance for the onsite design of coalbed water injection process parameters. The effect of dust reduction applied to onsite coalbed water injection is significant, with the average dust reduction rates during coal cutting and support moving being 67.85% and 46.07%, respectively, which effectively reduces the dust concentration on the working face and improves the working environment.


Sign in / Sign up

Export Citation Format

Share Document