Study on the impact of ventilation on heat release rates of propane fires in tunnels

2021 ◽  
Vol 118 ◽  
pp. 104191
Author(s):  
XingChao Chen ◽  
Zhilin Jiang ◽  
HongPeng Qiu ◽  
Dongli Gao ◽  
Peng Lin
Author(s):  
Georg Fink ◽  
Michael Jud ◽  
Thomas Sattelmayer

In this paper, pilot-ignited high pressure dual-fuel (HPDF) combustion of a natural gas jet is investigated on a fundamental basis by applying two separate single-hole injectors to a rapid compression expansion machine (RCEM). A Shadowgraphy system is used for optical observations, and the combustion progress is assessed in terms of heat release rates. The experiments focus on the combined influence of injection timing and geometrical jet arrangement on the jet interaction and the impact on the combustion process. In a first step, the operational range for successful pilot self-ignition and transition to natural gas jet combustion is determined, and the restricting phenomena are identified by analyzing the shadowgraph images. Within this range, the combustion process is assessed by evaluation of ignition delays and heat release rates. Strong interaction is found to delay or even prohibit pilot ignition, while it facilitates a fast and stable onset of the gas jet combustion. Furthermore, it is shown that the heat release rate is governed by the time of ignition with respect to the start of natural gas injection — as this parameter defines the level of premixing. Evaluation of the time of gas jet ignition within the operability map can therefore directly link a certain spatial and temporal interaction to the resulting heat release characteristics. It is finally shown that controlling the heat release rate through injection timing variation is limited for a certain angle between the two jets.


2019 ◽  
pp. 326-326
Author(s):  
Olivier Zatao-Samedi ◽  
Abbo Oumarou ◽  
Jean M’Boliguipa ◽  
Mvogo Onguene ◽  
Ruben Mouangue

Many factors have an influence on the development of compartment fire notably on its heat release rate as well as on its capability to propagate and become a flashover situation. The main element which rapidly conveys fire from a compartment to another is hot smoke flowing out through openings of the compartment source of fire. The present work aims to experiment the impact of the variation of heat release rate of the source on the behaviour of fire. So, five fire tests with different heat release rates were thus carried out in a reduced scale room. Temperature of burned gases inside the room, were measured during tests by sensors connected to a data acquisition system. Results revealed that temperature of burned gases as well as its content in carbon monoxide, evolves differently according to two ranges of the incoming air/outgoing gases ratio. The first range of which the ratio is lower than 2, corresponds to the case where both parameters decrease rapidly. The second range of which the ratio is higher than 2, corresponds to the case where both parameters decrease moderately. The transition from the first to the second range, points out the passing from the ventilation-controlled fire to the fuel-controlled fire. A relation expressing the variation of the mass flow rate of outgoing burned gases according to the heat release rate of the fire source has been given.


1991 ◽  
Vol 83 (3-4) ◽  
pp. 325-332 ◽  
Author(s):  
E.E. Zukoski ◽  
J.H. Morehart ◽  
T. Kubota ◽  
S.J. Toner

2005 ◽  
Vol 40 (7) ◽  
pp. 646-668 ◽  
Author(s):  
Haukur Ingason ◽  
Anders Lönnermark
Keyword(s):  

2013 ◽  
Vol 588 ◽  
pp. 149-156 ◽  
Author(s):  
Stanisław Polanowski ◽  
Rafał Pawletko ◽  
Kazimierz Witkowski

Analysis of the indicator diagram is the basis of technical state evaluation of marine diesel engines. The indicator diagram contains a large amount of diagnostic information. A major problem for the diagnostic use of the indicator diagram is the pressure sensor location. Indicator channel and valve may introduce significant distortions in the resulting pressure. The paper presents results of research conducted on the medium speed laboratory engine Al 25/30. Pressure measurement (indication) was made by the sensor placed directly in the cylinder (instead of starting air valve), before the indicator valve (with special Kistler adapter) and on the indicator valve. Distortion of heat release characteristics for the sensor placed on the indicator valve is important, but it is estimated that diagnostic information is not erased. For medium speed engines is to be expected the use of a portable pressure sensors placed on the indicator valve. For this reason, further research is needed to assess the impact of channels and valves on different cylinders. During the research the course of heat release rate q and the heat released Q were determined. The curve of heat release rate q is a full equivalent to fuel injection pressure curve in the fuel pipes. It allows identification of the failure of the injection system. The curve of Q allows such determination and assessment of internal efficiency of the cylinder.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Saarthak Gupta ◽  
Kiran Manoharan ◽  
Santosh Hemchandra

Abstract Hydrodynamic instability in lean premixed gas turbine combustors can cause coherent flow velocity oscillations. These can in turn drive heat release oscillations that when favorably coupled with combustor acoustic modes can result in combustion instability. The aim of this paper is to understand the impact of fuel staging on the characteristics of hydrodynamic modes in multinozzle combustors. We extend our recent numerical study on the hydrodynamic stability characteristics of a multinozzle combustor having three nozzles in a straight line with uniform fuel–air ratio in each nozzle, to the nonuniform fuel–air ratio case. As before, we construct the base flow model for this study by superposing contributions from individual nozzles, determined using a base flow model for a nominally axisymmetric single nozzle, at every point in the computational domain. The impact of fuel staging is captured by changing the burnt to unburnt gas density ratio parameter in the individual contribution from each nozzle. We investigate the characteristics of the most locally absolutely unstable mode for two cases. The first one is when the middle nozzle is made fuel rich when compared to the side nozzles and the second is when the side nozzles are made fuel rich relative to the middle nozzle. The impact of nonuniform fuel/air ratio on the local absolutely unstable temporal eigenvalues is seen to be small. However, significant changes in the spatial structure of the flow oscillations associated with the hydrodynamic eigenmodes are observed. In the first case, the flow oscillations with a different locally azimuthal nature on the middle nozzle when compared to the side nozzles emerge as the middle nozzle is made richer. In the second case, the oscillations on the two side nozzles are suppressed leaving the middle nozzle in a state that closely matches that of a single unconfined nozzle with the same nominal base flow velocity field. These types of internozzle variations in flow oscillation characteristics can explain the emergence of nonuniformity in heat release oscillation characteristics between individual nozzles in multinozzle combustors.


Sign in / Sign up

Export Citation Format

Share Document