Experimental study and field validation on soil clogging of EPB shields in completely decomposed granite

2022 ◽  
Vol 120 ◽  
pp. 104300
Author(s):  
Zhongtian Chen ◽  
Adam Bezuijen ◽  
Yong Fang ◽  
Kai Wang ◽  
Ruyong Deng
2009 ◽  
Vol 46 (10) ◽  
pp. 1229-1235 ◽  
Author(s):  
Jian-Hua Yin

The relative compaction (RC) parameter is commonly used for assessment of the degree of compaction of existing fill slopes and (or) for the design and construction of new fill slopes. This technical note presents the results of an experimental study on the relationship of RC with the saturated hydraulic conductivity (ksat) of typical completely decomposed granite (CDG) in Hong Kong. The results are interpreted and discussed. Useful correlations of RC versus ksat and void ratio (e) versus ksat are obtained. It is found that the RC has a significant influence on ksat of CDG. The influence of RC is equivalent to the influence of e on ksat of the soil.


2010 ◽  
Vol 47 (10) ◽  
pp. 1112-1126 ◽  
Author(s):  
Md. Akhtar Hossain ◽  
Jian-Hua Yin

Shear strength and dilative characteristics of a re-compacted completely decomposed granite (CDG) soil are studied by performing a series of single-stage consolidated drained direct shear tests under different matric suctions and net normal stresses. The axis-translation technique is applied to control the pore-water and pore-air pressures. A soil-water retention curve (SWRC) is obtained for the CDG soil from the equilibrium water content corresponding to each applied matric suction value for zero net normal stress using a modified direct shear apparatus. Shear strength increases with matric suction and net normal stress, and the failure envelope is observed to be linear. The apparent angle of internal friction and cohesion intercept increase with matric suction. A greater dilation angle is found at higher suctions with lower net normal stresses, while lower or zero dilation angles are observed under higher net normal stresses with lower suctions, also at a saturated condition. Experimental shear strength data are compared with the analytical shear strength results obtained from a previously modified model considering the SWRC, effective shear strength parameters, and analytical dilation angles. The experimental shear strength data are slightly higher than the analytical results under higher net normal stresses in a higher suction range.


Author(s):  
Wei Zhang ◽  
Jia-qiang Zou ◽  
Kang Bian ◽  
Yang Wu

The immersion weakening effect of natural soil has always been a difficult problem encountered in geotechnical engineering practice. The bond dissolution is a common cause of soil strength deterioration, which remains not well understood yet. In this study, a thermodynamic-based constitutive model of structural soils based on the α model is first established, considering the bond strength by modifying the yield surface size and gradually reducing the bond strength with the development of plastic strain. Furthermore, by taking the meso-mechanisms of bond dissolution into account, the evolution rule of the free energy during the bond dissolution process is derived based on a homogenization approach, and a thermodynamic-based constitutive model of structural soil with bond dissolution is thereafter developed. By comparing with the results of one-dimensional compression tests and conventional triaxial tests, the model is verified to be capable of reflecting the gradual destructuration process of soil while loading. The comparison with triaxial test results of completely decomposed granite after different immersion durations and parametric studies show that based on the cross-scale energy equivalence, the model can well reflect the strength deterioration characteristics of completely decomposed granite with bond dissolution mechanisms at the mesoscale fully considered.


2020 ◽  
Vol 57 (5) ◽  
pp. 763-769 ◽  
Author(s):  
W. Li ◽  
C.Y. Kwok ◽  
K. Senetakis

Drained triaxial shearing tests were performed on a well-graded compressive sand (completely decomposed granite, CDG) and its mixtures with granulated rubber tires to investigate the effects of rubber size and content on their mechanical behaviour. Three sizes of rubber particles, GR1, GR2, and GR3, were used with size ratios to CDG (D50,rubber : D50,CDG) of 0.9, 3.5, and 7.2, respectively, and the rubber content ranged from 0% to 30%. The results show that for CDG–GR1 mixtures, the strength decreases with increasing rubber content, while for CDG–GR2 and CDG–GR3 mixtures, the strength decreases only at 10% rubber content and then increases markedly with increasing rubber content. The increase of strength is mainly because the inclusion of large rubber particles widens the particle size distributions of the mixtures, resulting in denser packings. The denser packings also lead to a decrease in compressibility. At larger size ratio and higher rubber content, the CDG–rubber mixtures show higher shear strength and lower compressibility than pure CDG, which indicates the CDG–rubber mixtures are very suitable to be used as filling materials.


2019 ◽  
Vol 260 ◽  
pp. 105242 ◽  
Author(s):  
Y.R. Zhao ◽  
H.Q. Yang ◽  
L.P. Huang ◽  
R. Chen ◽  
X.S. Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document