A refined nonlocal isogeometric model for multilayer functionally graded graphene platelet-reinforced composite nanoplates

2021 ◽  
Vol 164 ◽  
pp. 107862
Author(s):  
P. Phung-Van ◽  
Qui X. Lieu ◽  
A.J.M. Ferreira ◽  
Chien H. Thai
2020 ◽  
Vol 26 (19-20) ◽  
pp. 1627-1645 ◽  
Author(s):  
Alireza Rahimi ◽  
Akbar Alibeigloo ◽  
Mehran Safarpour

Because of promoted thermomechanical performance of functionally graded graphene platelet–reinforced composite ultralight porous structural components, this article investigates bending and free vibration behavior of functionally graded graphene platelet–reinforced composite porous cylindrical shell based on the theory of elasticity. Effective elasticity modulus of the composite is estimated with the aid of modified version of Halpin–Tsai micromechanics. Rule of mixtures is used to obtain mass density and Poisson’s ratio of the graphene platelet–reinforced composite shell. An analytical solution is introduced to obtain the natural frequencies and static behavior of simply supported cylindrical shell by applying the state-space technique along the radial coordinate and Fourier series expansion along the circumferential and axial direction. In addition, differential quadrature method is used to explore the response of the cylindrical shell in the other cases of boundary conditions. Validity of the applied approach is examined by comparing the numerical results with those published in the available literature. A comprehensive parametric study is conducted on the effects of different combinations of graphene platelets distribution patterns and porosity distribution patterns, boundary conditions, graphene platelets weight fraction, porosity coefficient, and geometry of the shell (such as mid-radius to thickness ratio and length to mid-radius ratio) on the bending and free vibration behavior of the functionally graded graphene platelet–reinforced composite porous cylindrical shell. The results of this study provide useful practical tips for engineers designing composite structures.


2020 ◽  
Vol 31 (19) ◽  
pp. 2211-2228
Author(s):  
Yu Wang ◽  
Chuang Feng ◽  
Jie Yang ◽  
Ding Zhou ◽  
Weiqing Liu

This article investigates the nonlinear bending of functionally graded graphene platelet–reinforced composite plate with dielectric permittivity. Three functionally graded graphene platelet distribution patterns are considered in this study. Effective medium theory is adopted to determine tensile modulus and dielectric permittivity while rule of mixture is used to determine Poisson’s ratio of graphene platelet–reinforced composites. Governing equations for nonlinear bending of the functionally graded graphene platelet–reinforced composite plates are established based on Hamilton’s principle within the framework of first-order shear deformation plate theory and von Kármán geometrical nonlinearity. Through differential quadrature method, the governing equations are numerically solved and the nonlinear bending behaviors of the functionally graded graphene platelet–reinforced composite plates are obtained. The influences of functionally graded distribution pattern, graphene platelet volume fraction and the attributes of electrical loadings on the bending behaviors of the plates are comprehensively examined. It is demonstrated that the performances of the functionally graded graphene platelet–reinforced composite plates can be designed and actively tuned through adjusting several parameters, which will be helpful to develop graphene platelet–reinforced smart materials and structures.


2021 ◽  
pp. 107754632110248
Author(s):  
Reza Ansari ◽  
Ramtin Hassani ◽  
Emad Hasrati ◽  
Hessam Rouhi

In this article, the vibrational behavior of conical panels in the nonlinear regime made of functionally graded graphene platelet–reinforced composite having a hole with various shapes is investigated in the context of higher-order shear deformation theory. To achieve this aim, a numerical approach is used based on the variational differential quadrature and finite element methods. The geometrical nonlinearity is captured using the von Karman hypothesis. Also, the modified Halpin–Tsai model and rule of mixture are applied to calculate the material properties of graphene platelet–reinforced composite for various functionally graded distribution patterns of graphene platelets. The governing equations are derived by a variational approach and represented in matrix-vector form for the computational purposes. Moreover, attributable to using higher-order shear deformation theory, a mixed formulation approach is presented to consider the continuity of first-order derivatives on the common boundaries of elements. In the numerical results, the nonlinear free vibration behaviors of functionally graded graphene platelet–reinforced composite conical panels including square/circular/elliptical hole and with crack are studied. The effects of boundary conditions, graphene platelet reinforcement, and other important parameters on the vibrational response of panels are comprehensively analyzed.


Author(s):  
Shaowu Yang ◽  
Yuxin Hao ◽  
Wei Zhang ◽  
Li Yang ◽  
Lingtao Liu

AbstractIn this study, the first-order shear deformation theory (FSDT) is used to establish a nonlinear dynamic model for a conical shell truncated by a functionally graded graphene platelet-reinforced composite (FG-GPLRC). The vibration analyses of the FG-GPLRC truncated conical shell are presented. Considering the graphene platelets (GPLs) of the FG-GPLRC truncated conical shell with three different distribution patterns, the modified Halpin-Tsai model is used to calculate the effective Young’s modulus. Hamilton’s principle, the FSDT, and the von-Karman type nonlinear geometric relationships are used to derive a system of partial differential governing equations of the FG-GPLRC truncated conical shell. The Galerkin method is used to obtain the ordinary differential equations of the truncated conical shell. Then, the analytical nonlinear frequencies of the FG-GPLRC truncated conical shell are solved by the harmonic balance method. The effects of the weight fraction and distribution pattern of the GPLs, the ratio of the length to the radius as well as the ratio of the radius to the thickness of the FG-GPLRC truncated conical shell on the nonlinear natural frequency characteristics are discussed. This study culminates in the discovery of the periodic motion and chaotic motion of the FG-GPLRC truncated conical shell.


2020 ◽  
Vol 10 (7) ◽  
pp. 2600
Author(s):  
Tho Hung Vu ◽  
Hoai Nam Vu ◽  
Thuy Dong Dang ◽  
Ngoc Ly Le ◽  
Thi Thanh Xuan Nguyen ◽  
...  

The present paper deals with a new analytical approach of nonlinear global buckling of spiral corrugated functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical shells subjected to radial loads. The equilibrium equation system is formulated by using the Donnell shell theory with the von Karman’s nonlinearity and an improved homogenization model for spiral corrugated structure. The obtained governing equations can be used to research the nonlinear postbuckling of mentioned above structures. By using the Galerkin method and a three term solution of deflection, an approximated analytical solution for the nonlinear stability problem of cylindrical shells is performed. The linear critical buckling loads and postbuckling strength of shells under radial loads are numerically investigated. Effectiveness of spiral corrugation in enhancing the global stability of spiral corrugated FG-CNTRC cylindrical shells is investigated.


Sign in / Sign up

Export Citation Format

Share Document