scholarly journals Behavior and design of thin-walled double-skin concrete-filled rectangular steel tubular short and slender columns with external stainless-steel tube incorporating local buckling effects

2022 ◽  
Vol 170 ◽  
pp. 108552
Author(s):  
Mizan Ahmed ◽  
Qing Quan Liang ◽  
Ahmed Hamoda ◽  
Mehrdad Arashpour
Applied laser ◽  
2011 ◽  
Vol 31 (3) ◽  
pp. 248-250
Author(s):  
李淑玉 Li Shuyu ◽  
田新国 Tian Xinguo ◽  
贺敬地 He Jingdi ◽  
刘超 Liu Chao

2021 ◽  
Vol 227 ◽  
pp. 111416
Author(s):  
Tuan Trung Le ◽  
Vipulkumar Ishvarbhai Patel ◽  
Qing Quan Liang ◽  
Phat Huynh

1966 ◽  
Vol 88 (1) ◽  
pp. 137-139 ◽  
Author(s):  
P. S. Lall ◽  
R. J. Schoenhals

The Lagrangian method of description was used, as opposed to the Eulerian coordinate system, in studying the dynamic response of a single fluid heat exchanger. Experimental measurements are reported for a heated thin walled stainless steel tube. Comparison of the analytical and experimental results is given.


2006 ◽  
Vol 06 (04) ◽  
pp. 457-474 ◽  
Author(s):  
M. A. BRADFORD ◽  
A. ROUFEGARINEJAD ◽  
Z. VRCELJ

Circular thin-walled elastic tubes under concentric axial loading usually fail by shell buckling, and in practical design procedures the buckling load can be determined by modifying the local buckling stress to account empirically for the imperfection sensitive response that is typical in Donnell shell theory. While the local buckling stress of a hollow thin-walled tube under concentric axial compression has a solution in closed form, that of a thin-walled circular tube with an elastic infill, which restrains the local buckling mode, has received far less attention. This paper addresses the local buckling of a tubular member subjected to axial compression, and formulates an energy-based technique for determining the local buckling stress as a function of the stiffness of the elastic infill by recourse to a transcendental equation. This simple energy formulation, with one degree of buckling freedom, shows that the elastic local buckling stress increases from 1 to [Formula: see text] times that of a hollow tube as the stiffness of the elastic infill increases from zero to infinity; the latter case being typical of that of a concrete-filled steel tube. The energy formulation is then recast into a multi-degree of freedom matrix stiffness format, in which the function for the buckling mode is a Fourier representation satisfying, a priori, the necessary kinematic condition that the buckling deformation vanishes at the point where it enters the elastic medium. The solution is shown to converge rapidly, and demonstrates that the simple transcendental formulation provides a sufficiently accurate representation of the buckling problem.


Author(s):  
A. E. Gorodetskii ◽  
V. L. Bukhovets ◽  
R. Kh. Zalavutdinov ◽  
A. P. Zakharov

2014 ◽  
Vol 1081 ◽  
pp. 270-274
Author(s):  
Zui Xian Yu ◽  
Xue Sheng Wang ◽  
Qin Zhu Chen

A new preparation technique of carbon steel/stainless steel clad tube was introduced, and the contact surface was well combined. Meanwhile, with the using of tube heat exchanger, the experiment on the heat transfer performance of the clad tube was done. Comparing the 10/316 clad tube and the 316 stainless steel tube, the effects on the heat transfer performance of 316 stainless steel tube attached to carbon steel was evaluated. It is showed that overall heat transfer coefficient of 10/316 clad tubes is higher than that of stainless steel tube. The average heat transfer coefficient of 10/316 clad tubes is about 18.7%~34.4% higher than that of stainless steel tube. Experimental investigation indicates that, by brazing and cold drawing, the 10/316 clad tube was well combined and the thermal conductivity was better than that of stainless steel tube.


2012 ◽  
Vol 3 (3) ◽  
pp. 243-250
Author(s):  
A. Loosveld ◽  
W. De Waele ◽  
K. Faes ◽  
O. Zaitov

The goal of this master thesis is to realize and investigate leak tightness of joints produced by theelectromagnetic pulse (EMP) crimping process. This way of joining metals has gained more attention lately.With EMP welding, leak tight joints can already be achieved. However, the crimping process has somemajor advantages over EMP welding like the fact that more material combinations are possible and itrequires less energy. To realize the leak tightness, two kinds of sealing materials are used: O-rings andadhesives. The workpieces consist of an aluminium or stainless steel tube which is crimped on a solidaluminium mandrel with circumferential grooves in it. First, some preliminary tests are performed todetermine how much the tubes deform in the grooves. This deformation mainly depends on the appliedcharging voltage and the geometry of the groove. With this information, it is possible to estimate the amountof compression an O-ring would undergo when placed inside this groove. On other workpieces, adhesiveswill be applied. Several test procedures can be conducted on the parts to investigate leak tightness. Theresults of a helium test and a pressure burst test on the first test series conducted at the Walloon researchcentre CEWAC already showed that the use of O-rings can be effective.


Sign in / Sign up

Export Citation Format

Share Document