High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity

2006 ◽  
Vol 106 (4-5) ◽  
pp. 307-313 ◽  
Author(s):  
Angus J. Wilkinson ◽  
Graham Meaden ◽  
David J. Dingley
Author(s):  
Frank Altmann ◽  
Jens Beyersdorfer ◽  
Jan Schischka ◽  
Michael Krause ◽  
German Franz ◽  
...  

Abstract In this paper the new Vion™ Plasma-FIB system, developed by FEI, is evaluated for cross sectioning of Cu filled Through Silicon Via (TSV) interconnects. The aim of the study presented in this paper is to evaluate and optimise different Plasma-FIB (P-FIB) milling strategies in terms of performance and cross section surface quality. The sufficient preservation of microstructures within cross sections is crucial for subsequent Electron Backscatter Diffraction (EBSD) grain structure analyses and a high resolution interface characterisation by TEM.


2021 ◽  
Vol 54 (2) ◽  
pp. 513-522
Author(s):  
Edward L. Pang ◽  
Christopher A. Schuh

Accurately indexing pseudosymmetric materials has long proven challenging for electron backscatter diffraction. The recent emergence of intensity-based indexing approaches promises an enhanced ability to resolve pseudosymmetry compared with traditional Hough-based indexing approaches. However, little work has been done to understand the effects of sample position and orientation on the ability to resolve pseudosymmetry, especially for intensity-based indexing approaches. Thus, in this work the effects of crystal orientation and detector distance in a model tetragonal ZrO2 (c/a = 1.0185) material are quantitatively investigated. The orientations that are easiest and most difficult to correctly index are identified, the effect of detector distance on indexing confidence is characterized, and these trends are analyzed on the basis of the appearance of specific zone axes in the diffraction patterns. The findings also point to the clear benefit of shorter detector distances for resolving pseudosymmetry using intensity-based indexing approaches.


Sign in / Sign up

Export Citation Format

Share Document