scholarly journals Numerical study of the effect of liquid compressibility on acoustic droplet vaporization

2021 ◽  
pp. 105769
Author(s):  
Sukwon Park ◽  
Gihun Son
2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Ying Xin ◽  
Aili Zhang ◽  
Lisa X. Xu ◽  
J. Brian Fowlkes

Acoustic droplet vaporization has the potential to shorten treatment time of high-intensity focused ultrasound (HIFU) while minimizing the possible effects of microbubbles along the propagation path. Distribution of the bubbles formed from the droplets during the treatment is the major factor shaping the therapeutic region. A numerical model was proposed to simulate the bubble area evolution during this treatment. Using a linear acoustic equation to describe the ultrasound field, a threshold range was defined that determines the amount of bubbles vaporized in the treated area. Acoustic parameters, such as sound speed, acoustic attenuation coefficient, and density, were treated as a function of the bubble size distribution and the gas void fraction, which were related to the vaporized bubbles in the medium. An effective pressure factor was proposed to account for the influence of the existing bubbles on the vaporization of the nearby droplets. The factor was obtained by fitting one experimental result and was then used to calculate bubble clouds in other experimental cases. Comparing the simulation results to these other experiments validated the model. The dynamic change of the pressure and the bubble distribution after exposure to over 20 pulses of HIFU are obtained. It is found that the bubble area grows from a grainlike shape to a “tadpole,” with comparable dimensions and shape to those observed in experiments. The process was highly dynamic with the shape of the bubble area changing with successive HIFU pulses and the focal pressure. The model was further used to predict the shape of the bubble region triggered by HIFU when a bubble wall pre-exists. The results showed that the bubble wall helps prevent droplet vaporization on the distal side of the wall and forms a particularly shaped region with bubbles. This simulation model has predictive potential that could be beneficial in applications, such as cancer treatment, by parametrically studying conditions associated with these treatments and designing treatment protocols.


Author(s):  
Ying Xin ◽  
Aili Zhang ◽  
Lisa X. Xu ◽  
J. Brian Fowlkes

Abstract Acoustic droplet vaporization (ADV) has proven to enhance high intensity focused ultrasound (HIFU) thermal ablation of tumor. It has also been demonstrated that triggering droplets before HIFU exposure could be a potential way to control both the size and the shape of the thermal lesion. In this paper, a numerical model is proposed to predict the thermal lesion created in ADV enhanced HIFU treatment. Bubble oscillation was coupled into a viscoelastic medium in the model to more closely represent real applications in tissues. Several physical processes caused by continuous wave ultrasound and elevated temperature during the HIFU exposure were considered, including rectified diffusion, gas solubility variation with temperature in the medium, boiling, etc. Four droplet concentrations spanning two orders of magnitude were calculated. The bubble cloud formed from triggering of the droplets by the pulse wave ultrasound, along with the evolution of the shape and location of the bubble cloud and thermal lesion during the following continuous wave exposure were obtained. The increase of bubble void fraction caused by continuous wave exposure were found to be consistent with the experimental observation. With the increase of droplet concentration, the predicted bubble cloud shapes vary from tadpole to triangular and double triangular, while the thermal lesions move toward the transducer. The results show that the assumptions used in this model increased the accuracy of the results. This model may be used for parametrical study of ADV enhanced HIFU treatment and be further used for treatment planning and optimization in the future.


Author(s):  
J. Stengele ◽  
H.-J. Bauer ◽  
S. Wittig

The understanding of multicomponent droplet evaporation in a high pressure and high temperature gas is of great importance for the design of modern gas turbine combustors, since the different volatilities of the droplet components affect strongly the vapor concentration and, therefore, the ignition and combustion process in the gas phase. Plenty of experimental and numerical research is already done to understand the droplet evaporation process. Until now, most numerical studies were carried out for single component droplets, but there is still lack of knowledge concerning evaporation of multicomponent droplets under supercritical pressures. In the study presented, the Diffusion Limit Model is applied to predict bicomponent droplet vaporization. The calculations are carried out for a stagnant droplet consisting of heptane and dodecane evaporating in a stagnant high pressure and high temperature nitrogen environment. Different temperature and pressure levels are analyzed in order to characterize their influence on the vaporization behavior. The model employed is fully transient in the liquid and the gas phase. It accounts for real gas effects, ambient gas solubility in the liquid phase, high pressure phase equilibrium and variable properties in the droplet and surrounding gas. It is found that for high gas temperatures (T = 2000 K) the evaporation time of the bicomponent droplet decreases with higher pressures, whereas for moderate gas temperatures (T = 800 K) the lifetime of the droplet first increases and then decreases when elevating the pressure. This is comparable to numerical results conducted with single component droplets. Generally, the droplet temperature increases with higher pressures reaching finally the critical mixture temperature of the fuel components. The numerical study shows also that the same tendencies of vapor concentration at the droplet surface and vapor mass flow are observed for different pressures. Additionally, there is almost no influence of the ambient pressure on fuel composition inside the droplet during the evaporation process.


Author(s):  
Man Zhang ◽  
Mario Fabiilli ◽  
Paul Carson ◽  
Frederic Padilla ◽  
Scott Swanson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document