scholarly journals Covalent crosslinking of tumor antigens stimulates an antitumor immune response

Vaccine ◽  
2010 ◽  
Vol 28 (40) ◽  
pp. 6613-6620 ◽  
Author(s):  
Yanping Wang ◽  
Xiang-Yang Wang ◽  
John R. Subjeck ◽  
Hyung L. Kim
2018 ◽  
Vol 19 (12) ◽  
pp. 3793 ◽  
Author(s):  
Mathieu Césaire ◽  
Juliette Thariat ◽  
Serge M. Candéias ◽  
Dinu Stefan ◽  
Yannick Saintigny ◽  
...  

Immunotherapy has revolutionized the practice of oncology, improving survival in certain groups of patients with cancer. Immunotherapy can synergize with radiation therapy, increase locoregional control, and have abscopal effects. Combining it with other treatments, such as targeted therapies, is a promising means of improving the efficacy of immunotherapy. Because the value of immunotherapy is amplified with the expression of tumor antigens, coupling poly(ADP-ribose) polymerase (PARP) inhibitors and immunotherapy might be a promising treatment for cancer. Further, PARP inhibitors (PARPis) are being combined with radiation therapy to inhibit DNA repair functions, thus enhancing the effects of radiation; this association might interact with the antitumor immune response. Cytotoxic T lymphocytes are central to the antitumor immune response. PARP inhibitors and ionizing radiation can enhance the infiltration of cytotoxic T lymphocytes into the tumor bed, but they can also enhance PD-1/PDL-1 expression. Thus, the addition of immune checkpoint inhibitors with PARP inhibitors and/or ionizing radiation could counterbalance such immunosuppressive effects. With the present review article, we proposed to evaluate some of these associated therapies, and we explored the biological mechanisms and medical benefits of the potential combination of radiation therapy, immunotherapy, and PARP inhibitors.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Xin Yong ◽  
Yü-Feng Xiao ◽  
Gang Luo ◽  
Bin He ◽  
Mu-Han Lü ◽  
...  

Vaccine-induced cytotoxic T lymphocytes (CTLs) play a critical role in adaptive immunity against cancers. An important goal of current vaccine research is to induce durable and long-lasting functional CTLs that can mediate cytotoxic effects on tumor cells. To attain this goal, there are four distinct steps that must be achieved. To initiate a vaccine-induced CTL antitumor immune response, dendritic cells (DCs) must capture antigens derived from exogenous tumor vaccines in vivo or autologous DCs directly loaded in vitro with tumor antigens must be injected. Next, tumor-antigen-loaded DCs must activate CTLs in lymphoid organs. Subsequently, activated CTLs must enter the tumor microenvironment to perform their functions, at which point a variety of negative regulatory signals suppress the immune response. Finally, CTL-mediated cytotoxic effects must overcome the tolerance induced by tumor cells. Each step is a complex process that may be impeded in many ways. However, if these steps happen under appropriate regulation, the vaccine-induced CTL antitumor immune response will be more successful. For this reason, we should gain a better understanding of the basic mechanisms that govern the immune response. This paper, based on the steps necessary to induce an immune response, discusses current strategies for enhancing vaccine-induced CTL antitumor immune responses.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 294
Author(s):  
Ching-Hung Hsieh ◽  
Cheng-Zhe Jian ◽  
Liang-In Lin ◽  
Guan-Sian Low ◽  
Ping-Yun Ou ◽  
...  

Immune checkpoint inhibitors (ICIs), including antibodies that target programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA4), represent some of the most important breakthroughs in new drug development for oncology therapy from the past decade. CXC chemokine ligand 13 (CXCL13) exclusively binds CXC chemokine receptor type 5 (CXCR5), which plays a critical role in immune cell recruitment and activation and the regulation of the adaptive immune response. CXCL13 is a key molecular determinant of the formation of tertiary lymphoid structures (TLSs), which are organized aggregates of T, B, and dendritic cells that participate in the adaptive antitumor immune response. CXCL13 may also serve as a prognostic and predictive factor, and the role played by CXCL13 in some ICI-responsive tumor types has gained intense interest. This review discusses how CXCL13/CXCR5 signaling modulates cancer and immune cells to promote lymphocyte infiltration, activation by tumor antigens, and differentiation to increase the antitumor immune response. We also summarize recent preclinical and clinical evidence regarding the ICI-therapeutic implications of targeting the CXCL13/CXCR5 axis and discuss the potential role of this signaling pathway in cancer immunotherapy.


2016 ◽  
Vol 8 (334) ◽  
pp. 334ps9-334ps9 ◽  
Author(s):  
Pedro Romero ◽  
Jacques Banchereau ◽  
Nina Bhardwaj ◽  
Mark Cockett ◽  
Mary L. Disis ◽  
...  

Cancer vaccine development has been vigorously pursued for 40 years. Immunity to tumor antigens can be elicited by most vaccines tested, but their clinical efficacy remains modest. We argue that a concerted international effort is necessary to understand the human antitumor immune response and achieve clinically effective cancer vaccines.


Author(s):  
Anastasia S. Proskurina ◽  
Vera S. Ruzanova ◽  
Tamara V. Tyrinova ◽  
Dmitry N. Strunkin ◽  
Svetlana S. Kirikovich ◽  
...  

The present review is an attempt to characterize the principles of both onset and development of the systemic antitumor immune response triggered by in situ vaccination, which is a new trend in anticancer immunotherapy. Modern methods of cancer immunotherapy usually require the presence of a specific target antigen. The in situ vaccination approach does not need a specific antigen. The determinants necessary for the formation of the immune response are all present at the vaccination site, as tumor cells are lysed by cells of innate immunity, infiltrating the tumor and activated by the treatments. The first part of the review is a compilation of the literature data on causes, circumstances, and factors determining the presence in the local tumor node of the totality of tumor antigens essential for the development of the adaptive antitumor immune response. The second part of the review analyzes possible events of antitumor immune response development due to in situ vaccination using ligand-receptor interaction and antigen-presenting cells activation, based on the data structuring performed previously


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3386
Author(s):  
Bart Spiesschaert ◽  
Katharina Angerer ◽  
John Park ◽  
Guido Wollmann

The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.


Sign in / Sign up

Export Citation Format

Share Document