Mumps antibodies in the cord blood: Association with maternal recall of mumps. Possible consequences for vaccination strategies

Vaccine ◽  
2020 ◽  
Vol 38 (5) ◽  
pp. 1211-1215 ◽  
Author(s):  
João Frade ◽  
Carla Nunes ◽  
João Rodrigo Mesquita ◽  
Maria São José Nascimento ◽  
Leonie Prasad ◽  
...  
2020 ◽  
Author(s):  
Bettina Budeus ◽  
Artur Kibler ◽  
Martina Brauser ◽  
Ekaterina Homp ◽  
Kevin Bronischewski ◽  
...  

AbstractThe human infant B cell system is considered premature or impaired. Here we show that most cord blood B cells are mature and functional as seen in adults, albeit with distinct transcriptional programs providing accelerated responsiveness to T cell-independent and T cell-dependent stimulation and facilitated IgA class switching. Stimulation drives extensive differentiation into antibody-secreting cells, thereby presumably limiting memory B cell formation. The neonatal Ig-repertoire is highly variable, but conserved, showing recurrent B cell receptor (BCR) clonotypes frequently shared between neonates. Our study demonstrates that cord blood B cells are not impaired but differ from their adult counterpart in a conserved BCR repertoire and rapid but transient response dynamics. These properties may account for the sensitivity of neonates to infections and limited effectivity of vaccination strategies. Humanized mice suggest that the distinctness of cord blood versus adult B cells is already reflected by the developmental program of hematopoietic precursors, arguing for a layered B-1/B-2 lineage system as in mice. Still, our findings reveal overall limited comparability of human cord blood B cells and murine B-1 cells.Significance StatementNeonates and infants suffer from enhanced susceptibility to infections. Our study contrasts with the current concept of a premature or impaired B cell system in neonates, by showing that most cord blood B cells are mature and functional. However, their responses are rapid but provide only short-term protection, which may help to improve infant vaccination strategies. We propose an altered perspective on the early human B cell system, which looks similar to but functions differently from the adult counterpart. Finally, our analysis indicates that cord blood- and adult B cell development occur layered as in mice, but certain mouse models still may offer a limited view on human neonatal B cell immunity.


Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 181 ◽  
Author(s):  
Maud Plantinga ◽  
Colin G. de Haar ◽  
Ester Dünnebach ◽  
Denise A.M.H. van den Beemt ◽  
Kitty W.M. Bloemenkamp ◽  
...  

Dendritic cells (DCs) are professional antigen-presenting cells which instruct both the innate and adaptive immune systems. Once mature, they have the capacity to activate and prime naïve T cells for recognition and eradication of pathogens and tumor cells. These characteristics make them excellent candidates for vaccination strategies. Most DC vaccines have been generated from ex vivo culture of monocytes (mo). The use of mo-DCs as vaccines to induce adaptive immunity against cancer has resulted in clinical responses but, overall, treatment success is limited. The application of primary DCs or DCs generated from CD34+ stem cells have been suggested to improve clinical efficacy. Cord blood (CB) is a particularly rich source of CD34+ stem cells for the generation of DCs, but the dynamics and plasticity of the specific DC lineage development are poorly understood. Using flow sorting of DC progenitors from CB cultures and subsequent RNA sequencing, we found that CB-derived DCs (CB-DCs) exclusively originate from CD115+-expressing progenitors. Gene set enrichment analysis displayed an enriched conventional DC profile within the CD115-derived DCs compared with CB mo-DCs. Functional assays demonstrated that these DCs matured and migrated upon good manufacturing practice (GMP)-grade stimulation and possessed a high capacity to activate tumor-antigen-specific T cells. In this study, we developed a culture protocol to generate conventional DCs from CB-derived stem cells in sufficient numbers for vaccination strategies. The discovery of a committed DC precursor in CB-derived stem cell cultures further enables utilization of conventional DC-based vaccines to provide powerful antitumor activity and long-term memory immunity.


2004 ◽  
Vol 10 ◽  
pp. 31
Author(s):  
Florence M. Amorado-Santos ◽  
Maria Honolina S. Gomez ◽  
Maria Victoria R. Olivares ◽  
Zayda N. Gamilla

Nature ◽  
2003 ◽  
Author(s):  
Helen Pearson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document