Effects of bias voltage and gas pressure on orientation and microstructure of iridium coating by double glow plasma

Vacuum ◽  
2011 ◽  
Vol 86 (4) ◽  
pp. 429-437 ◽  
Author(s):  
Wangping Wu ◽  
Zhaofeng Chen ◽  
Xin Lin ◽  
Binbin Li ◽  
Xiangna Cong
1993 ◽  
Vol 8 (5) ◽  
pp. 1109-1115 ◽  
Author(s):  
Yuji Chiba ◽  
Toshio Omura ◽  
Hiroshi Ichimura

Wear resistance of arc ion-plated chromium nitride films has been studied. It has been found that texture and phases composing the films depend much on bias voltage and nitrogen gas pressure at the deposition. A phase diagram was constructed as a function of these two parameters, which indicated that three categories exist: CrN single, CrN and Cr2N dual, and CrN and Cr dual phased regions, respectively. Results of Falex No. 2 test showed that the wear resistance of CrN single phased films is superior to others, especially when (220) preferred orientation is developed. Since hardness and surface morphology do not differ much between these films, a high toughness of CrN single phased film is considered to make a difference by suppressing abrasion wear.


Author(s):  
Hirotaka Tanabe ◽  
Yoshio Miyoshi ◽  
Tohru Takamatsu ◽  
Hitoshi Awano ◽  
Takaaki Yamano

The mechanical properties of TiN films deposited on carbon steel JIS S45C by reactive dc magnetron sputtering under three sputtering gas pressures, 0.5Pa, 0.8Pa, and 1.76Pa were investigated. The residual stress once increased and then decreased with increasing bias voltage at 0.5Pa and 0.8Pa, but increased monotonously at 1.76Pa. These variations could be explained by the variations of the bombarding energy of a sputtered ion at each gas pressure. The variations of hardness and toughness correlated with the variation of residual stress. The variation of adhesive strength also could be explained by the variation of the bombarding energy with a model proposed in this study. A specific wear rate was also investigated, and it was found that to increase not only the hardness but also the adhesive strength is necessary to improve the wear resistance of TiN films.


Coatings ◽  
2014 ◽  
Vol 4 (2) ◽  
pp. 214-230 ◽  
Author(s):  
Liam Ward ◽  
Fabian Junge ◽  
Andreas Lampka ◽  
Mark Dobbertin ◽  
Christoph Mewes ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 575
Author(s):  
Xixi Luo ◽  
Jing Cao ◽  
Guanghui Meng ◽  
Fangli Yu ◽  
Qiong Jiang ◽  
...  

Double glow plasma surface metallurgy (DGPSM) technology was applied to obtain a Fe-Al-Cr coating on the surface of Q235 carbon steel. The influence of the sample temperature, gas pressure, the distance between the substrate, and the source electrode on the quality of the obtained Fe-Al-Cr coatings was systematically investigated. The results showed that the parameters for DGPSM have a significant effect on the uniformity, particle size, compactness, and thickness of the coating. Under the optimized parameters (sample temperature: 800 °C, gas pressure: 35 Pa, and electrode distance: 15 mm), the obtained Fe-Al-Cr coating contains Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) solid solution, Cr23C6, and α-Fe(Al), exhibiting excellent corrosion resistance in a 0.5 mol/L H2SO4 solution, which is even better than that of the 304 stainless steel.


2011 ◽  
Vol 189-193 ◽  
pp. 901-905
Author(s):  
Chang Wei Zou ◽  
Jun Zhang ◽  
Wei Xie ◽  
Le Xi Shao

CrN films with deposition rates of 30-190 nm/min were deposited on Si (111) substrates by middle-frequency magnetron sputtering methods. XRD, SEM, EDS and microhardness tests were used to investigate the effects of bias voltages and total gas pressure on the structure and mechanical properties of the resulting CrN films. With the increasing of bias voltages and total gas pressure, the preferential diffraction orientation changed from (111) to (200). A smooth surface was observed by the SEM experiments and the thickness of the film was about 2 µm. The deposition rates and Cr content of resulting films were highly influenced by the magnitude of the bias voltage and total gas pressure. RMS and Ra properties of the CrN films increased when increased total gas pressure or decreased bias voltage. CrN films produced under optimal conditions have an almost 1:1 Cr:N ratio as determined by EDS. The hardness of the CrN film increased from 2200 to 2700 HV when increased the bias voltages from 0 to 200 V.


2016 ◽  
Vol 368 ◽  
pp. 77-81
Author(s):  
Miroslav Béger ◽  
Jozef Sondor ◽  
Martin Sahul ◽  
Paulína Zacková ◽  
Marián Haršáni ◽  
...  

The article deals with the influence of different deposition parameters on the selected properties of AlCrN/Si3N4 nanocomposite coatings. Bias voltage, cathodes currents and working gas pressure were changed during the deposition process. All coatings were deposited using Lateral Rotating Cathodes (LARC®) process that belongs to the group of cathodic arc evaporation PVD technologies. In comparison with the typical cathodic arc evaporation process which usually uses planar targets the LARC® process utilizes rotational cathodes that are positioned close to each other. Nanohardness, Young's modulus, thickness and residual stresses were determinated in order to evaluate the influence of deposition parameters on these coatings properties


1994 ◽  
Vol 9 (7) ◽  
pp. 1820-1828 ◽  
Author(s):  
N. Maréchal ◽  
E. Quesnel ◽  
Y. Pauleau

Chromium-carbon coatings have been deposited on various substrates by direct sputtering of a chromium carbide, Cr3C2, target in pure argon atmosphere. The composition of coatings determined by Rutherford backscattering spectroscopy and the deposition rate were investigated as functions of the sputtering gas pressure and self-bias voltage applied to substrates. The atom number ratio C/Cr in the coatings was equal to 0.7 regardless of the deposition conditions investigated. Oxygen and argon atoms were the major impurities incorporated in the amorphous coatings. Oxygen-free Cr-C coatings were prepared at low argon pressures or on substrates biased to a voltage in the range −100 to −320 V. The Cr-C coatings deposited on biased substrates contained less than 2 at. % of argon. The morphological features of Cr-C coatings examined by scanning electron microscopy were also dependent on the sputtering gas pressure and bias voltage of substrates. Fully dense structures were observed for coatings deposited at low argon pressures or on biased substrates. The electrical resistivity of Cr-C coatings was extremely dependent on the concentration of oxygen atoms incorporated in the coatings. Oxygen-free Cr-C coatings exhibited electrical resistivity values as low as 120 μΩ cm, i.e., less than twice the bulk resistivity of Cr3C2. The residual stresses in the coatings and microhardness of the deposited material were also investigated as functions of the deposition parameters. Tensile residual stresses were lower than 0.8 GPa, and the maximum microhardness of coatings was about 13000 MPa, i.e., similar to that of the bulk material.


Sign in / Sign up

Export Citation Format

Share Document