cr coating
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 46)

H-INDEX

16
(FIVE YEARS 4)

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1417
Author(s):  
Diana Diniasi ◽  
Florentina Golgovici ◽  
Alexandru Anghel ◽  
Manuela Fulger ◽  
Carmen Cristina Surdu-Bob ◽  
...  

The manuscript is focused on corrosion behavior of a Cr coating under CANada Deuterium Uranium(CANDU) primary circuit conditions. The Cr coating is obtained via the thermionic vacuum arc procedure on Zircaloy -4 cladding. The surface coating characterization was performed using metallographic analysis and scanning electron microscopy (SEM) with an energy dispersive spectra detector (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) investigations. The thickness of the Cr coating determined from SEM images is around 500 nm layers After the autoclaving period, the thickness of the samples increased in time slowly. The kinetic of oxidation established a logarithmic oxidation law. The corrosion tests for various autoclaving periods of time include electrochemical impedance spectroscopy (EIS) and potentiodynamic tests, permitting computing porosity and efficiency of protection. All surface investigations sustain electrochemical results and promote the Cr coating on Zircaloy-4 alloy autoclaved for 3024 h as the best corrosion resistance based on decrease in corrosion current density values simultaneously with the increase of the time spent in autoclave. A slow increase of Vickers micro hardness was observed as a function of the autoclaved period as well. The value reached for 3024 h being 219 Kgf/mm2 compared with 210 Kgf/mm2 value before autoclaving.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012047
Author(s):  
Ziyan Pan ◽  
Mingduo Yuan ◽  
Zhenyu Zou ◽  
Weijian Zhang ◽  
Mingyue Du ◽  
...  

Abstract In this study, the fracture mechanisms of Cr-coated Zr4 alloy samples were studied by in-situ tensile testing with high-resolution observations. Both original sample and pre-oxidized sample were studied to study the effects of pre-oxidation on the cracking and failure behavior. For the Cr-coated Zr4 sample, with the increase of tensile strain, multiple surface cracks were dominant and less interfacial cracks were formed, indicating good interfacial strength of Cr coating. For the pre-oxidized samples, there was a thin oxide layer formed on the Cr coating surface, revealing improved oxidation resistance and protection effects. However, a brittle ZrCr2 diffusion layer was formed in the same while at the Cr/Zr4 interface underneath the Cr coating, which would lead to earlier micro-cracks formed under tensile stress and evidently degrade the interfacial strength. The findings in the study indicated the importance of optimizing coating microstructure in future study to avoid forming the above-mentioned brittle diffusion interlayer and the associated premature failure.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012051
Author(s):  
Mingyue Du ◽  
Chenxue Wang ◽  
Jishen Jiang ◽  
Xianfeng Ma

Abstract In this study, an in situ three-point bending test was carried out to study the mechanical properties and cracking behavior of the Cr-coated Zr-4 alloy considering the effect of pre-oxidation. The results showed that high temperature pre-oxidation led to the formation of intermetallic ZrCr2 at the coating/substrate interface and an α-Zr(O) layer beneath the interface. During the three-point bending test, the Cr coating and Zr-4 substrate showed good plastic deformation. However, the brittle intermetallic ZrCr2 diffusion layer exhibited cracks in the early stage, which accelerated the crack penetration to the Cr coating and the Zr-4 substrate, leading to the pre-failure of the pre-oxidized sample.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012088
Author(s):  
Mingduo Yuan ◽  
Ziyan Pan ◽  
Zhenyu Zou ◽  
Weijian Zhang ◽  
Mingyue Du ◽  
...  

Abstract In-situ three-point bending tests and finite element modeling based on the cohesive zone model were developed to study the stress evolution and cracking behavior of the Cr coated Zr-4 alloy for accident tolerant fuel claddings. The initiation and propagation of micro-cracks were captured by in-situ observation and predicted by the numerical simulation. The results showed that vertical cracks first initiated from the coating surface and propagated to the Cr/Zr4 interface. Under larger bending strain, interfacial cracks began to initiate from the vertical crack tips driven by large local stress concentration.


2021 ◽  
Vol 29 (1) ◽  
pp. 61-64
Author(s):  
V. Nadtoka ◽  
M. Kraiev ◽  
A. Borisenko ◽  
V. Kraieva

Method for ion-plasma deposition is applied for covering of heat-resistant Ni-Cr alloy XH78T. Coating deposition is performed under nitrogen gas atmosphere at the pressure from 3×10-5 to 1×10-2 Torr. The nitrogen content in the coating is reached up to 2,7 %. Nitrated coatings with a thickness of 184-222 μm is obtained without embrittlement and with a uniform distribution of microhardness. The effect of the nitrogen pressure in a vacuum chamber on the structure of the coatings, which changes from homogeneous to columnar with conical crystallites, is presented. Nitration increases microhardness of the coatings from 3669 to 7575 HV, the wear resistance of the coatings increases by 6-8 times. The received coatings can be used to increase the durability of metallurgical equipment parts.


Author(s):  
Xiulin Yan ◽  
Ruiqian Zhang ◽  
Yan Liu ◽  
Yunhua Zhang ◽  
Hui Chen

Cr coating on Zr-based fuel tubes is a potential approach for the development of accident tolerant fuels (ATF). To settle the cracking behavior and quantitative evaluation of shear strength of Cr coating under different loading conditions, the average shear strength between Cr coating and zircaloy substrate has been estimated using a modified shear-lag model in this paper. Its key parameters are determined experimentally, and the tensile method has been used to research the cracking behavior of Cr coating under different strain rates. The results show that with the increase of strain rate, the interfacial shear strength increases because of the decrease of cracking spacing, while the shear strength changes erratically with the coating thickness increases. Furthermore, abundant two unequal-crack-spacings and few two equal-crack-spacings are observed which are perpendicular to the loading direction.


Sign in / Sign up

Export Citation Format

Share Document