The preparation and characterization of the Ni-NiO/TiO2 hollow composite materials on micro-nano cellulose fibers

Vacuum ◽  
2018 ◽  
Vol 155 ◽  
pp. 553-558 ◽  
Author(s):  
Bo Liu ◽  
Yanfei Pan ◽  
Guangming Sun ◽  
Jintian Huang
2020 ◽  
Vol 144 ◽  
pp. 112035 ◽  
Author(s):  
Zineb Kassab ◽  
Said Mansouri ◽  
Youssef Tamraoui ◽  
Houssine Sehaqui ◽  
Hassan Hannache ◽  
...  

2016 ◽  
Vol 147 ◽  
pp. 282-293 ◽  
Author(s):  
Bamdad Barari ◽  
Emad Omrani ◽  
Afsaneh Dorri Moghadam ◽  
Pradeep L. Menezes ◽  
Krishna M. Pillai ◽  
...  

Author(s):  
Yan-Fei Pan ◽  
Jin-Tian Huang ◽  
Xin Wang

Ni-P composite coatings were prepared on cellulose fiber surface via a simple electroless Ni-P approach. The metal-coated extent, dispersion extent of micro or nano cellulose fibers and crystalline structure of Ni-P composite coatings were investigated. The homogeneous hollow composite coatings and metal-coated extent of micro or nano cellulose fibers were improved with the increase in ultrasonic power, and the ideal composite coatings were obtained as ultrasonic up to 960 W. The metallization for cellulose fibers enhanced the dispersion extent of micro or nano cellulose fibers. A uniform coating, consisting of the hollow coating on cellulose fibers surface, could be obtained. At the same time, metallization did not damage the original structure and surface functional groups of cellulose fibers. The concentration of cellulose fibers and ultrasonic power had a direct influence on the metal-coated extent of cellulose fiber surface. The metal-coated extent, dispersion extent of micro or nano cellulose fibers and crystalline structure of Ni-P composite coatings exhibited excellent properties as the concentration of cellulose fibers and ultrasonic power were 2 g/L and 960 W, respectively.


Author(s):  
Mohammad Sohail ◽  
Sanaullah Khan ◽  
Shafiq ur Rahman ◽  
Bilal Ahmad ◽  
Adnan Adnan ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2636
Author(s):  
Petr Valášek ◽  
Miroslav Müller ◽  
Vladimír Šleger ◽  
Viktor Kolář ◽  
Monika Hromasová ◽  
...  

Composite materials with natural fillers have been increasingly used as an alternative to synthetically produced materials. This trend is visible from a representation of polymeric composites with natural cellulose fibers in the automotive industry of the European Union. This trend is entirely logical, owing to a preference for renewable resources. The experimental program itself follows pronounced hypotheses and focuses on a description of the mechanical properties of untreated and alkali-treated natural vegetable fibers, coconut and abaca fibers. These fibers have great potential for use in composite materials. The results and discussion sections contribute to an introduction of an individual methodology for mechanical property assessment of cellulose fibers, and allows for a clear definition of an optimal process of alkalization dependent on the content of hemicellulose and lignin in vegetable fibers. The aim of this research was to investigate the influence of alkali treatment on the surface microstructure and tensile properties of coir and abaca fibers. These fibers were immersed into a 5% solution of NaOH at laboratory temperature for a time interval of 30 min, 1 h, 2 h, 3 h, 6 h, 12 h, 24 h, and 48 h, rinsed and dried. The fiber surface microstructures before and after the alkali treatment were evaluated by SEM (scanning electron microscopy). SEM analysis showed that the alkali treatment in the NaOH solution led to a gradual connective material removal from the fiber surface. The effect of the alkali is evident from the visible changes on the surface of the fibers.


2019 ◽  
Vol 217 ◽  
pp. 178-189 ◽  
Author(s):  
M. Kathirselvam ◽  
A. Kumaravel ◽  
V.P. Arthanarieswaran ◽  
S.S. Saravanakumar

Sign in / Sign up

Export Citation Format

Share Document