Physiological work-loop contractions using isolated myocytes

2019 ◽  
Vol 99 ◽  
pp. 106595
Author(s):  
Mayel Gharanei ◽  
Adam Linekar ◽  
Oana Chuizbaian ◽  
Rob Wallis ◽  
Helen Maddock
Keyword(s):  
1997 ◽  
Vol 200 (22) ◽  
pp. 2907-2912 ◽  
Author(s):  
G N Askew ◽  
I S Young ◽  
J D Altringham

The function of many muscles requires that they perform work. Fatigue of mouse soleus muscle was studied in vitro by subjecting it to repeated work loop cycles. Fatigue resulted in a reduction in force, a slowing of relaxation and in changes in the force-velocity properties of the muscle (indicated by changes in work loop shape). These effects interacted to reduce the positive work and to increase the negative work performed by the muscle, producing a decline in net work. Power output was sustained for longer and more cumulative work was performed with decreasing cycle frequency. However, absolute power output was highest at 5 Hz (the cycle frequency for maximum power output) until power fell below 20% of peak power. As cycle frequency increased, slowing of relaxation had greater effects in reducing the positive work and increasing the negative work performed by the muscle, compared with lower cycle frequencies.


1995 ◽  
Vol 198 (10) ◽  
pp. 2221-2227 ◽  
Author(s):  
D A Syme ◽  
R K Josephson

The work capacity of segments of atrial and ventricular muscle from the frog Rana pipiens was measured as a function of muscle length using the work loop technique. Both the work done during shortening and the work required to re-lengthen the muscle after shortening increased with muscle length. Net work increased with length up to a maximum, beyond which work declined. The optimum sarcomere length for work output was 2.5-2.6 microns for both atrial and ventricular muscle. Isometric force increased with muscle length to lengths well beyond the optimum for work output. Thus, the decline in work at long lengths is not simply a consequence of a reduction in the capacity of heart muscle to generate force. It is proposed that it is the non-linear increase in work required to re-lengthen muscle with increasing muscle length which limits net work output and leads to a maximum in the relationship between net work and muscle length. Extension of the results from muscle strips to intact hearts suggests that the work required to fill the ventricle exceeds that available from atrial muscle at all but rather short ventricular muscle lengths.


2021 ◽  
Vol 111 ◽  
pp. 107009
Author(s):  
Sophie Fletcher ◽  
Helen Maddock ◽  
Rob Wallis ◽  
Rob S. James ◽  
Mayel Gharanei

2002 ◽  
Vol 205 (2) ◽  
pp. 189-200
Author(s):  
Douglas A. Syme ◽  
Robert E. Shadwick

SUMMARY The mechanical power output of deep, red muscle from skipjack tuna (Katsuwonus pelamis) was studied to investigate (i) whether this muscle generates maximum power during cruise swimming, (ii) how the differences in strain experienced by red muscle at different axial body locations affect its performance and (iii) how swimming speed affects muscle work and power output. Red muscle was isolated from approximately mid-way through the deep wedge that lies next to the backbone; anterior (0.44 fork lengths, ANT) and posterior (0.70 fork lengths, POST) samples were studied. Work and power were measured at 25°C using the work loop technique. Stimulus phases and durations and muscle strains (±5.5 % in ANT and ±8 % in POST locations) experienced during cruise swimming at different speeds were obtained from previous studies and used during work loop recordings. In addition, stimulus conditions that maximized work were determined. The stimulus durations and phases yielding maximum work decreased with increasing cycle frequency (analogous to tail-beat frequency), were the same at both axial locations and were almost identical to those used by the fish during swimming, indicating that the muscle produces near-maximal work under most conditions in swimming fish. While muscle in the posterior region undergoes larger strain and thus produces more mass-specific power than muscle in the anterior region, when the longitudinal distribution of red muscle mass is considered, the anterior muscles appear to contribute approximately 40 % more total power. Mechanical work per length cycle was maximal at a cycle frequency of 2–3 Hz, dropping to near zero at 15 Hz and by 20–50 % at 1 Hz. Mechanical power was maximal at a cycle frequency of 5 Hz, dropping to near zero at 15 Hz. These fish typically cruise with tail-beat frequencies of 2.8–5.2 Hz, frequencies at which power from cyclic contractions of deep red muscles was 75–100 % maximal. At any given frequency over this range, power using stimulation conditions recorded from swimming fish averaged 93.4±1.65 % at ANT locations and 88.6±2.08 % at POST locations (means ± s.e.m., N=3–6) of the maximum using optimized conditions. When cycle frequency was held constant (4 Hz) and strain amplitude was increased, work and power increased similarly in muscles from both sample sites; work and power increased 2.5-fold when strain was elevated from ±2 to ±5.5 %, but increased by only approximately 12 % when strain was raised further from ±5.5 to ±8 %. Taken together, these data suggest that red muscle fibres along the entire body are used in a similar fashion to produce near-maximal mechanical power for propulsion during normal cruise swimming. Modelling suggests that the tail-beat frequency at which power is maximal (5 Hz) is very close to that used at the predicted maximum aerobic swimming speed (5.8 Hz) in these fish.


1997 ◽  
Vol 200 (3) ◽  
pp. 503-509
Author(s):  
J Layland ◽  
I S Young ◽  
J D Altringham

The work loop technique was used to examine the effects of adrenaline on the mechanics of cardiac muscle contraction in vitro. The length for maximum active force (Lmax) and net work production (Lopt) for rat papillary muscles was determined under control conditions (without adrenaline). The concentration of adrenaline producing the maximum inotropic effect was determined. This concentration was used in the remainder of the experiments. Sinusoidal strain cycles about Lopt were performed over a physiologically relevant range of cycle frequencies (4-11 Hz). Maximum work and the frequency for maximum work increased from 1.91 J kg-1 at 3 Hz in controls to 2.97 J kg-1 at 6 Hz with adrenaline. Similarly, maximum power output and the frequency for maximum power output (fopt) increased from 8.62 W kg-1 at 6 Hz in controls to 19.95 W kg-1 at 8 Hz with adrenaline. We suggest that the power-frequency relationship, derived using the work loop technique, represents a useful index with which to assess the effects of pharmacological interventions on cardiac muscle contractility.


1997 ◽  
Vol 273 (3) ◽  
pp. C1057-C1063 ◽  
Author(s):  
S. J. Swoap ◽  
V. J. Caiozzo ◽  
K. M. Baldwin

Force-velocity (FV) relationships have been used previously to calculate maximal power production and to identify an optimal velocity of shortening (V(opt)-fv) to produce such power in skeletal muscle. The cyclical nature of muscle position during locomotion for muscles such as the soleus and plantaris is such that either constant force or velocity is rarely attained. In the present study, the work loop technique, a technique developed to measure maximal attainable power output from muscles undergoing cyclic length changes, was undertaken to determine whether simulating in vivo function alters the power-velocity relationship of the soleus and plantaris and, in particular, the velocity of shortening that produces maximal power (V(opt)-wl). FV relationships were determined for both soleus (n = 4) and plantaris (n = 4) muscles in situ from adult female Sprague-Dawley rats by measuring shortening velocities during afterloaded isotonic contractions. The velocity that produced maximal power using FV relationships, V(opt)-fv, was 54.6 +/- 0.7 mm/s for the plantaris vs. 20.2 +/- 1.2 mm/s for the soleus. Then, the work loop technique was employed to measure net power from these same muscles at multiple cycling frequencies (1.5 to 4.0 Hz for the soleus; 4.0 to 8.0 Hz for the plantaris). Multiple power-velocity curves were generated (one at each cycle frequency) by varying the strain (1-8 mm). Thus, at each cycle frequency, V(opt)-wl could be identified. For both the plantaris and soleus, V(opt)-wl at each cycle frequency was not different from their respective V(opt)-fv value. Thus both fast and slow skeletal muscles have inherent optimal shortening velocities, identifiable with FV relationships, that dictate their respective maximal attainable mechanical power production using the work loop technique.


2014 ◽  
Vol 28 (5) ◽  
pp. 722-731 ◽  
Author(s):  
Mayel Gharanei ◽  
Afthab Hussain ◽  
Rob S. James ◽  
Omar Janneh ◽  
Helen Maddock

Sign in / Sign up

Export Citation Format

Share Document