scholarly journals Genetic diversity and correlation with feline infectious peritonitis of feline coronavirus type I and II: A 5-year study in Taiwan

2009 ◽  
Vol 136 (3-4) ◽  
pp. 233-239 ◽  
Author(s):  
Chao-Nan Lin ◽  
Bi-Ling Su ◽  
Ching-Ho Wang ◽  
Ming-Wei Hsieh ◽  
Ti-Jen Chueh ◽  
...  
2018 ◽  
Vol 66 (2) ◽  
pp. 763-775 ◽  
Author(s):  
Chunqiu Li ◽  
Qiujin Liu ◽  
Fanzhi Kong ◽  
Donghua Guo ◽  
Junjun Zhai ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 576 ◽  
Author(s):  
Tomomi Takano ◽  
Kumi Satoh ◽  
Tomoyoshi Doki ◽  
Taishi Tanabe ◽  
Tsutomu Hohdatsu

Feline infectious peritonitis (FIP) is a viral disease with a high morbidity and mortality by the FIP virus (FIPV, virulent feline coronavirus). Several antiviral drugs for FIP have been identified, but many of these are expensive and not available in veterinary medicine. Hydroxychloroquine (HCQ) is a drug approved by several countries to treat malaria and immune-mediated diseases in humans, and its antiviral effects on other viral infections (e.g., SARS-CoV-2, dengue virus) have been confirmed. We investigated whether HCQ in association with interferon-ω (IFN-ω) is effective for FIPV in vitro. A total of 100 μM of HCQ significantly inhibited the replication of types I and II FIPV. Interestingly, the combination of 100 μM of HCQ and 104 U/mL of recombinant feline IFN-ω (rfIFN-ω, veterinary registered drug) increased its antiviral activity against type I FIPV infection. Our study suggested that HCQ and rfIFN-ω are applicable for treatment of FIP. Further clinical studies are needed to verify the combination of HCQ and rIFN-ω will be effective and safe treatment for cats with FIP.


2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Yutaka Terada ◽  
Yudai Kuroda ◽  
Shigeru Morikawa ◽  
Yoshiharu Matsuura ◽  
Ken Maeda ◽  
...  

ABSTRACT Feline infectious peritonitis (FIP) is one of the most important infectious diseases in cats and is caused by feline coronavirus (FCoV). Tissue culture-adapted type I FCoV shows reduced FIP induction in experimental infections, which complicates the understanding of FIP pathogenesis caused by type I FCoV. We previously found that the type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats through the naturally infectious route. In this study, we employed a bacterial artificial chromosome-based reverse genetics system to gain more insights into FIP caused by the C3633 strain. We successfully generated recombinant virus (rC3663) from Fcwf-4 cells transfected with infectious cDNA that showed growth kinetics similar to those shown by the parental virus. Next, we constructed a reporter C3663 virus carrying the nanoluciferase (Nluc) gene to measure viral replication with high sensitivity. The inhibitory effects of different compounds against rC3663-Nluc could be measured within 24 h postinfection. Furthermore, we found that A72 cells derived from canine fibroblasts permitted FCoV replication without apparent cytopathic effects. Thus, our reporter virus is useful for uncovering the infectivity of type I FCoV in different cell lines, including canine-derived cells. Surprisingly, we uncovered aberrant viral RNA transcription of rC3663 in A72 cells. Overall, we succeeded in obtaining infectious cDNA clones derived from type I FCoV that retained its virulence. Our recombinant FCoVs are powerful tools for increasing our understanding of the viral life cycle and pathogenesis of FIP-inducing type I FCoV. IMPORTANCE Feline coronavirus (FCoV) is one of the most significant coronaviruses, because this virus induces feline infectious peritonitis (FIP), which is a lethal disease in cats. Tissue culture-adapted type I FCoV often loses pathogenicity, which complicates research on type I FCoV-induced feline infectious peritonitis (FIP). Since we previously found that type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats, we established a reverse genetics system for the C3663 strain to obtain recombinant viruses in the present study. By using a reporter C3663 virus, we were able to examine the inhibitory effect of 68 compounds on C3663 replication in Fcwf-4 cells and infectivity in a canine-derived cell line. Interestingly, one canine cell line, A72, permitted FCoV replication but with low efficiency and aberrant viral gene expression.


2021 ◽  
Vol 9 (9) ◽  
pp. 1801
Author(s):  
Shih-Jung Yen ◽  
Hui-Wen Chen

Ninety-five effusion samples were collected from cats with suspected feline infectious peritonitis in northern Taiwan; these samples showed a 47.4% (45/95) feline coronavirus (FCoV) positivity rate on immunofluorescence staining and RT-PCR. Young cats (≤24 months old) were found to have a significantly higher risk than cats >24 months old (odds ratio (OR) = 6.19, 95% confidence interval (CI) 2.54–16.00). No significant association was found between the positive rates and sex or breed. The A/G ratio in positive cases was significantly lower than the A/G ratio in negative cases. Genotyping and sequencing of the positive cases revealed 71.9% single infection with type I strains and 28.1% coinfection with types I and II. No single infections with type II strains were noted. The type I sequences had high diversity, while the type II sequences had high internal sequence identity and were more similar to CoVs from other species, such as dogs, pigs, and various small mammals. This study demonstrates the latest analysis of FCoV infection cases in northern Taiwan.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
A. S. Hora ◽  
P. O. Tonietti ◽  
S. A. Taniwaki ◽  
K. M. Asano ◽  
P. Maiorka ◽  
...  

Feline infectious peritonitis virus (FIPV) is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP), whereas feline enteric coronavirus (FECV) is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus) have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a–c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account.


2013 ◽  
Vol 66 (2) ◽  
pp. 126-130
Author(s):  
Yuya NAKAMOTO ◽  
Hideo MATSUNAGA ◽  
Takehisa SOMA ◽  
Takashi UEMURA ◽  
Satoru MATSUNAGA ◽  
...  

2020 ◽  
Vol 6 (2) ◽  
pp. 205511692094147
Author(s):  
Christopher Hoey ◽  
George Nye ◽  
Angela Fadda ◽  
Janet Bradshaw ◽  
Emi N Barker

Case summary A 7-month-old Siberian cat was presented for investigation of acute onset multifocal neurological deficits. Neurological examination documented dull mental status and an ambulatory left hemiparesis. Serum biochemistry documented marked hyperglobulinaemia. MRI of the brain identified marked leptomeningeal contrast enhancement extending along the brainstem caudally to involve the cranial cervical spinal cord. MRI of the cervical spine further identified a subarachnoid diverticulum that extended from the level of the obex to the C2–C3 vertebrae. Cerebrospinal fluid quantitative RT-PCR was positive for the presence of feline coronavirus. Histopathology revealed pyogranulomatous meningitis and choroid plexitis, uveitis and nephritis. Relevance and novel information This article describes the first reported case of a subarachnoid diverticulum associated with feline infectious peritonitis.


Sign in / Sign up

Export Citation Format

Share Document