An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis

2016 ◽  
Vol 217 ◽  
pp. 81-88 ◽  
Author(s):  
Mariana Costa Duarte ◽  
Letícia Martins dos Reis Lage ◽  
Daniela Pagliara Lage ◽  
Juliana Tonini Mesquita ◽  
Beatriz Cristina Silveira Salles ◽  
...  
2019 ◽  
Vol 199 ◽  
pp. 30-37 ◽  
Author(s):  
Tauane G. Soyer ◽  
Débora V.C. Mendonça ◽  
Grasiele S.V. Tavares ◽  
Daniela P. Lage ◽  
Daniel S. Dias ◽  
...  

2019 ◽  
Vol 73 ◽  
pp. 101966 ◽  
Author(s):  
Jessica K.T. Sousa ◽  
Luciana M.R. Antinarelli ◽  
Débora V.C. Mendonça ◽  
Daniela P. Lage ◽  
Grasiele S.V. Tavares ◽  
...  

2020 ◽  
Vol 26 ◽  
Author(s):  
Luíza Dantas-Pereira ◽  
Edézio F. Cunha-Junior ◽  
Valter V. Andrade-Neto ◽  
John F. Bower ◽  
Guilherme A. M. Jardim ◽  
...  

: Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo are essential for the development of a novel, specific and safe derivative, minimizing adverse effects.


2017 ◽  
Vol 14 (5) ◽  
pp. 597-604 ◽  
Author(s):  
Roberta Soares ◽  
Luciana Antinarelli ◽  
Isabela Souza ◽  
Isabela Souza ◽  
Fernanda Lopes ◽  
...  

Author(s):  
Naresh Damuka ◽  
Miranda Orr ◽  
Paul W. Czoty ◽  
Jeffrey L. Weiner ◽  
Thomas J. Martin ◽  
...  

AbstractMicrotubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.


2015 ◽  
Vol 59 (5) ◽  
pp. 2479-2487 ◽  
Author(s):  
Keerti Jain ◽  
Ashwni Kumar Verma ◽  
Prabhat Ranjan Mishra ◽  
Narendra Kumar Jain

ABSTRACTThe present study aimed to develop an optimized dendrimeric delivery system for amphotericin B (AmB). Fifth-generation (5.0G) poly(propylene imine) (PPI) dendrimers were synthesized, conjugated with mannose, and characterized by use of various analytical techniques, including Fourier transform infrared spectroscopy (FTIR),1H nuclear magnetic resonance (1H-NMR) spectroscopic analysis, and atomic force microscopy (AFM). Mannose-conjugated 5.0G PPI (MPPI) dendrimers were loaded with AmB and evaluated for drug loading efficiency,in vitrodrug release profile, stability, hemolytic toxicity to human erythrocytes, cytotoxicity to and cell uptake by J774A.1 macrophage cells, antiparasitic activity against intracellularLeishmania donovaniamastigotes,in vivopharmacokinetic and biodistribution profiles, drug localization index, toxicity, and antileishmanial activity. AFM showed the nanometric size of the MPPI dendrimers, with a nearly globular architecture. The conjugate showed a good entrapment efficiency for AmB, along with pH-sensitive drug release. Highly significant reductions in toxicity toward human erythrocytes and macrophage cells, without compromising the antiparasitic activity of AmB, were observed. The dendrimeric formulation of AmB showed a significant enhancement of the parasiticidal activity of AmB toward intramacrophagicL. donovaniamastigotes. In thein vitrocell uptake studies, the formulation showed selectivity toward macrophages, with significant intracellular uptake. Further pharmacokinetic and organ distribution studies elucidated the controlled delivery behavior of the formulation. The drug localization index was found to increase significantly in macrophage-rich organs.In vivostudies showed a biocompatible behavior of MPPIA, with negligible toxicity even at higher doses, and promising antileishmanial activity. From the results, we concluded that surface-engineered dendrimers may serve as optimized delivery vehicles for AmB with enhanced activity and low or negligible toxicity.


Microbiology ◽  
2014 ◽  
Vol 160 (10) ◽  
pp. 2157-2169 ◽  
Author(s):  
Sudarson Sundarrajan ◽  
Junjappa Raghupatil ◽  
Aradhana Vipra ◽  
Nagalakshmi Narasimhaswamy ◽  
Sanjeev Saravanan ◽  
...  

P128 is an anti-staphylococcal protein consisting of the Staphylococcus aureus phage-K-derived tail-associated muralytic enzyme (TAME) catalytic domain (Lys16) fused with the cell-wall-binding SH3b domain of lysostaphin. In order to understand the mechanism of action and emergence of resistance to P128, we isolated mutants of Staphylococcus spp., including meticillin-resistant Staphylococcus aureus (MRSA), resistant to P128. In addition to P128, the mutants also showed resistance to Lys16, the catalytic domain of P128. The mutants showed loss of fitness as shown by reduced rate of growth in vitro. One of the mutants tested was found to show reduced virulence in animal models of S. aureus septicaemia suggesting loss of fitness in vivo as well. Analysis of the antibiotic sensitivity pattern showed that the mutants derived from MRSA strains had become sensitive to meticillin and other β-lactams. Interestingly, the mutant cells were resistant to the lytic action of phage K, although the phage was able to adsorb to these cells. Sequencing of the femA gene of three P128-resistant mutants showed either a truncation or deletion in femA, suggesting that improper cross-bridge formation in S. aureus could be causing resistance to P128. Using glutathione S-transferase (GST) fusion peptides as substrates it was found that both P128 and Lys16 were capable of cleaving a pentaglycine sequence, suggesting that P128 might be killing S. aureus by cleaving the pentaglycine cross-bridge of peptidoglycan. Moreover, peptides corresponding to the reported cross-bridge of Staphylococcus haemolyticus (GGSGG, AGSGG), which were not cleaved by lysostaphin, were cleaved efficiently by P128. This was also reflected in high sensitivity of S. haemolyticus to P128. This showed that in spite of sharing a common mechanism of action with lysostaphin, P128 has unique properties, which allow it to act on certain lysostaphin-resistant Staphylococcus strains.


2004 ◽  
Vol 48 (1) ◽  
pp. 130-136 ◽  
Author(s):  
Louis Maes ◽  
Dirk Vanden Berghe ◽  
Nils Germonprez ◽  
Ludo Quirijnen ◽  
Paul Cos ◽  
...  

ABSTRACT The in vitro and in vivo activities of a mixture of six oleane triterpene saponins, recovered from the methanolic extract of the leaves of the Vietnamese plant Maesa balansae (PX-6518), were evaluated against drug-sensitive visceral Leishmania strains. The in vitro 50% inhibitory concentration (IC50) against intracellular Leishmania infantum amastigotes was 0.04 μg/ml. The cytotoxic concentrations causing 50% cell death (CC50s) were about 1 μg/ml in murine macrophage host cells and >32 μg/ml in human fibroblasts (MRC-5 cell line). Evaluation in the Leishmania donovani BALB/c mouse model indicated that a single subcutaneous administration of 0.4 mg/kg at 1 day after infection reduced liver amastigote burdens by about 95% in all treated animals. If treatment was delayed until 14 days after infection, a dose of 1.6 mg/kg of body weight was required to maintain the same level of activity. Single 250-mg/kg doses of sodium stibogluconate (Pentostam) 1 and 14 days after infection produced comparable efficacies. A single dose of PX-6518 at 2.5 mg/kg administered 5 days before infection was still 100% effective in preventing liver infection, suggesting a particularly long residual action. Spleen and bone marrow could not be cleared by PX-6518 nor sodium stibogluconate. PX-6518 did not show activity after oral dosing at up to 200 mg/kg for 5 days. This study concludes that triterpenoid saponins from M. balansae show promising in vitro and in vivo antileishmanial potential and can be considered as new lead structures in the search for novel antileishmanial drugs.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2301 ◽  
Author(s):  
Federica De Castro ◽  
Michele Benedetti ◽  
Giovanna Antonaci ◽  
Laura Del Coco ◽  
Sandra De Pascali ◽  
...  

The novel [Pt(O,O′-acac)(γ-acac)(DMS)], Ptac2S, Pt(II) complex has recently gained increasing attention as a potential anticancer agent for its pharmacological activity shown in different tumor cell lines, studied both in vitro and in vivo. The mechanism of action of Ptac2S, operating on non-genomic targets, is known to be very different from that of cis-[PtCl2(NH3)2], cisplatin, targeting nucleic acids. In this work, we evaluated the cytotoxicity of Ptac2S on the cisplatin resistant Epithelial Ovarian Carcinoma (EOC), SKOV-3 cells, by the MTT assay. A 1H-NMR metabolomic approach coupled with multivariate statistical analysis was used for the first time for Ptac2S to figure out the biological mechanisms of action of the complex. The metabolic variations of intracellular metabolites and the composition of the corresponding extracellular culture media were compared to those of cisplatin (cells were treated at the IC50 doses of both drugs). The reported comparative metabolomic analysis revealed a very different metabolic profile between Ptac2S and cisplatin treated samples, thus confirming the different mechanism of action of Ptac2S also in the Epithelial Ovarian Carcinoma (EOC), SKOV-3 cells line. In particular, higher levels of pyruvate were observed in Ptac2S treated, with respect to cisplatin treated, cells (in both aqueous and culture media). In addition, a very different lipid expression resulted after the exposure to the two drugs (Ptac2S and cisplatin). These results suggest a possible explanation for the Ptac2S ability to circumvent cisplatin resistance in SKOV-3 cells.


2005 ◽  
Vol 49 (2) ◽  
pp. 808-812 ◽  
Author(s):  
D. Sereno ◽  
A. Monte Alegre ◽  
R. Silvestre ◽  
B. Vergnes ◽  
A. Ouaissi

ABSTRACT Our study represents the first report demonstrating the antileishmanial activity of nicotinamide (NAm), a form of vitamin B3. A 5 mM concentration of NAm significantly inhibited the intracellular growth of Leishmania amastigotes and the NAD-dependent deacetylase activity carried by parasites overexpressing Leishmania major SIR2 (LmSIR2). However, the transgenic parasites were as susceptible as the wild-type parasites to NAm-induced cell growth arrest. Therefore, we conclude that NAm inhibits leishmanial growth and that overexpression of LmSIR2 does not overcome this inhibition. The mechanism of the inhibition is not defined but may include other in vivo targets. NAm may thus represent a new antileishmanial agent which could potentially be used in combination with other drugs during therapy.


Sign in / Sign up

Export Citation Format

Share Document