scholarly journals In Vitro and In Vivo Activities of a Triterpenoid Saponin Extract (PX-6518) from the Plant Maesa balansae against Visceral Leishmania Species

2004 ◽  
Vol 48 (1) ◽  
pp. 130-136 ◽  
Author(s):  
Louis Maes ◽  
Dirk Vanden Berghe ◽  
Nils Germonprez ◽  
Ludo Quirijnen ◽  
Paul Cos ◽  
...  

ABSTRACT The in vitro and in vivo activities of a mixture of six oleane triterpene saponins, recovered from the methanolic extract of the leaves of the Vietnamese plant Maesa balansae (PX-6518), were evaluated against drug-sensitive visceral Leishmania strains. The in vitro 50% inhibitory concentration (IC50) against intracellular Leishmania infantum amastigotes was 0.04 μg/ml. The cytotoxic concentrations causing 50% cell death (CC50s) were about 1 μg/ml in murine macrophage host cells and >32 μg/ml in human fibroblasts (MRC-5 cell line). Evaluation in the Leishmania donovani BALB/c mouse model indicated that a single subcutaneous administration of 0.4 mg/kg at 1 day after infection reduced liver amastigote burdens by about 95% in all treated animals. If treatment was delayed until 14 days after infection, a dose of 1.6 mg/kg of body weight was required to maintain the same level of activity. Single 250-mg/kg doses of sodium stibogluconate (Pentostam) 1 and 14 days after infection produced comparable efficacies. A single dose of PX-6518 at 2.5 mg/kg administered 5 days before infection was still 100% effective in preventing liver infection, suggesting a particularly long residual action. Spleen and bone marrow could not be cleared by PX-6518 nor sodium stibogluconate. PX-6518 did not show activity after oral dosing at up to 200 mg/kg for 5 days. This study concludes that triterpenoid saponins from M. balansae show promising in vitro and in vivo antileishmanial potential and can be considered as new lead structures in the search for novel antileishmanial drugs.

2010 ◽  
Vol 78 (6) ◽  
pp. 2607-2619 ◽  
Author(s):  
Joseph Horzempa ◽  
Dawn M. O'Dee ◽  
Robert M. Q. Shanks ◽  
Gerard J. Nau

ABSTRACT The pathogenesis of Francisella tularensis has been associated with this bacterium's ability to replicate within macrophages. F. tularensis can also invade and replicate in a variety of nonphagocytic host cells, including lung and kidney epithelial cells and hepatocytes. As uracil biosynthesis is a central metabolic pathway usually necessary for pathogens, we characterized ΔpyrF mutants of both F. tularensis LVS and Schu S4 to investigate the role of these mutants in intracellular growth. As expected, these mutant strains were deficient in de novo pyrimidine biosynthesis and were resistant to 5-fluoroorotic acid, which is converted to a toxic product by functional PyrF. The F. tularensis ΔpyrF mutants could not replicate in primary human macrophages. The inability to replicate in macrophages suggested that the F. tularensis ΔpyrF strains would be attenuated in animal infection models. Surprisingly, these mutants retained virulence during infection of chicken embryos and in the murine model of pneumonic tularemia. We hypothesized that the F. tularensis ΔpyrF strains may replicate in cells other than macrophages to account for their virulence. In support of this, F. tularensis ΔpyrF mutants replicated in HEK-293 cells and normal human fibroblasts in vitro. Moreover, immunofluorescence microscopy showed abundant staining of wild-type and mutant bacteria in nonmacrophage cells in the lungs of infected mice. These findings indicate that replication in nonmacrophages contributes to the pathogenesis of F. tularensis.


2001 ◽  
Vol 45 (12) ◽  
pp. 3555-3559 ◽  
Author(s):  
K. C. Carter ◽  
A. B. Mullen ◽  
S. Sundar ◽  
R. T. Kenney

ABSTRACT In this study, the in vitro and in vivo efficacies of free sodium stibogluconate (SSG) and a nonionic surfactant vesicular formulation of SSG (SSG-NIV) against a laboratory strain ofLeishmania donovani (MHOM/ET/67:LV82) and different clinical isolates of L. donovani were determined. Treatment with SSG-NIV was more effective against intramacrophage amastigotes than treatment with SSG. In vivo murine studies showed that there was interstrain variability in the infectivity of the different L. donovani strains, with two of the strains (20001 and 20003) giving low parasite burdens. In addition, interstrain variability in the antileishmanial efficacy of SSG in a single dose containing 300 mg of Sb(V)/kg of body weight was observed. This dose of free drug either caused a >97% reduction in liver parasite burdens or had no significant effect on parasite burdens compared with the result with the respective control. In some instances, treatment with this free SSG dose also caused a significant reduction in spleen (strain 20006) or bone marrow (strains 20001 and 20009) parasite burdens. Treatment with SSG-NIV was more effective than that with SSG against all of the strains tested. In SSG-responsive strains, the reduction in liver parasite burdens by SSG-NIV treatment was similar to that caused by free SSG. In SSG-nonresponsive strains, SSG-NIV treatment caused at least a 95% reduction in liver parasite burdens. Overall, these results indicate that the use of a vesicular formulation of SSG is likely to increase its clinical efficacy against visceral leishmaniasis.


2014 ◽  
Vol 59 (1) ◽  
pp. 344-355 ◽  
Author(s):  
Roma Sinha ◽  
Jayeeta Roychoudhury ◽  
Partha Palit ◽  
Nahid Ali

ABSTRACTPentavalent antimonials have been the first-line treatment for leishmaniasis for decades. However, the development of resistance to sodium stibogluconate (SSG) has limited its use, especially for treating visceral leishmaniasis (VL). The present work aims to optimize a cationic liposomal formulation of SSG for the treatment of both SSG-sensitive (AG83) and SSG-resistant (GE1F8R and CK1R)Leishmania donovaniinfections. Parasite killing was determined by the 3-(4,5-dimethylthiazol-2)-2,5-diphenyltetrazolium bromide (MTT) assay and microscopic counting of Giemsa-stained macrophages. Macrophage uptake studies were carried out by confocal microscopic imaging. Parasite-liposome interactions were visualized through transmission electron microscopy. Toxicity tests were performed using assay kits. Organ parasite burdens were determined by microscopic counting and limiting dilution assays. Cytokines were measured by enzyme-linked immunosorbent assays (ELISAs) and flow cytometry. Although all cationic liposomes studied demonstrated leishmanicidal activity, phosphatidylcholine (PC)-dimethyldioctadecylammonium bromide (DDAB) vesicles were most effective, followed by PC-stearylamine (SA) liposomes. Since entrapment of SSG in PC-DDAB liposomes demonstrated enhanced ultrastructural alterations in promastigotes, PC-DDAB-SSG vesicles were further investigatedin vitroandin vivo. PC-DDAB-SSG could effectively alleviate SSG-sensitive and SSG-resistantL. donovaniinfections in the liver, spleen, and bone marrow of BALB/c mice at a dose of SSG (3 mg/kg body weight) not reported previously. The parasiticidal activity of these vesicles was attributed to better interactions with the parasite membranes, resulting in direct killing, and generation of a strong host-protective environment, necessitating a very low dose of SSG for effective cures.


2000 ◽  
Vol 192 (4) ◽  
pp. 507-516 ◽  
Author(s):  
Marlon Quinones ◽  
Sunil K. Ahuja ◽  
Peter C. Melby ◽  
Lyle Pate ◽  
Robert L. Reddick ◽  
...  

The prevailing paradigm is that production of the interleukin (IL)-12 p70 heterodimer, a critical T helper cell type 1 (Th1)–inducing cytokine, depends on the induced transcription of the p40 subunit. Concordant with this paradigm, we found that dendritic cells (DCs) produced IL-12 p70 only after at least 2–4 h of stimulation with lipopolysaccharide plus interferon γ. However, using several complementary experimental approaches, including electron and confocal microscopy, we now show that resting murine and human myeloid cells, including macrophages/DCs and DC-rich tissues, contain a novel source of bioactive IL-12 that is preformed and membrane associated. These preformed, membrane-associated IL-12 p70 stores are released within minutes after in vitro or in vivo contact with Leishmania donovani, an intracellular pathogen. Our findings highlight a novel source of bioactive IL-12 that is readily available for the rapid initiation of Th1 host responses to pathogens such as Leishmania species.


2009 ◽  
Vol 58 (10) ◽  
pp. 1298-1302 ◽  
Author(s):  
Ursula Fürnkranz ◽  
Markus Nagl ◽  
Waldemar Gottardi ◽  
Ulrich Matt ◽  
Horst Aspöck ◽  
...  

Protozoan parasites of the genus Leishmania are the causative agents of life-threatening visceral as well as cutaneous and mucocutaneous leishmaniasis. First-line drugs are antimonials, but toxicity and resistance in some endemic areas cause serious problems. In the current study, the antileishmanial activity of the weak oxidant N-chlorotaurine (NCT) was investigated. NCT is a derivative of the amino acid taurine produced by granulocytes and monocytes during oxidative burst, but can also be synthesized chemically and used topically as an antiseptic at a concentration of 1 % (55 mM) in vivo. NCT susceptibility tests were performed in vitro with promastigotes and amastigotes of Leishmania infantum and Leishmania donovani. As NH4Cl is known to increase the activity of NCT by the formation of monochloramine (NH2Cl), co-treatment assays were included in the study. Mean EC50 values after 1 h of treatment were 5.94 mM for L. infantum and 9.8 mM for L. donovani promastigotes. Co-treatment with 5.5 mM NCT plus 19 mM NH4Cl led to complete killing of promastigotes of both strains within 15 min. Amastigotes were inactivated by treatment with 2 mM NCT alone. The results of this study indicate a high potential of NCT against Leishmania species.


1978 ◽  
Vol 147 (2) ◽  
pp. 515-530 ◽  
Author(s):  
K-P Chang ◽  
DM Dwyer

An in vitro system was developed for studying host-parasite cellular interactions in visceral leishmaniasis with amastigotes isolated from infected spleens of hamsters and their peritoneal macrophages maintained by an improved method. The culture system supports the growth of Leishmania donovani amastigotes with different parasite/macrophage ratios for up to 2 wk, yielding results more consistent and reproducible than previously possible. Results indicated that the forms of the amastigotes (with or without adherent host membranes) and the state of the macrophages (with or without stimulation in vivo by thioglycollate or in vitro by aging) had no effect on the growth rate of the parasites, which, however, seems to vary with the macrophage subpopulations. An electron microscope study suggests that amastigotes are ingested through phagocytosis by the macrophages and become lodged in loose phagosomes. Additional evidence with quantitative data is presented to support the earlier findings that phagosome-lysosome fusion occurs after the interiorization of the parasites and that they not only survive but multiply in these vacuoles. During the postinfection periods, reorientation of amastigotes in vacuolar space results in the appearance of three types of parasitophorous vacuoles (parasites in loose vacuoles, in tight-fitting vacuoles or abutting in part against the inner lining of vacuoles). The last category may be the predominant type giving rise to the variations observed. Exogenously introduced dense marker accumulated in these parasitophorous vacuoles of the macrophages infected for several days indicating a continuous accessibility of amastigotes to the ambient mestruum via phagosome-lysosome vacuolar system of the host cells. This finding may have significant implications in parasite nutrition, host immunity, and chemotherapy of leishmaniasis.


2020 ◽  
Vol 26 ◽  
Author(s):  
Luíza Dantas-Pereira ◽  
Edézio F. Cunha-Junior ◽  
Valter V. Andrade-Neto ◽  
John F. Bower ◽  
Guilherme A. M. Jardim ◽  
...  

: Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo are essential for the development of a novel, specific and safe derivative, minimizing adverse effects.


2020 ◽  
Author(s):  
Avik Sotira Scientific

UNSTRUCTURED Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome (SARS) caused by a virus known as SARS-Coronavirus 2 (SARS-CoV2). Without a targeted-medicine, this disease has been causing a massive humanitarian crisis not only in terms of mortality, but also imposing a lasting damage to social life and economic progress of humankind. Therefore, an immediate therapeutic strategy needs to be intervened to mitigate this global crisis. Here, we report a novel KepTide™ (Knock-End Peptide) therapy that nullifies SARS-CoV2 infection. SARS-CoV2 employs its surface glycoprotein “spike” (S-glycoprotein) to interact with angiotensin converting enzyme-2 (ACE-2) receptor for its infection in host cells. Based on our in-silico-based homology modeling study validated with a recent X-ray crystallographic structure (PDB ID:6M0J), we have identified that a conserved motif of S-glycoprotein that intimately engages multiple hydrogen-bond (H-bond) interactions with ACE-2 enzyme. Accordingly, we designed a peptide, termed as ACIS (ACE-2 Inhibitory motif of Spike), that displayed significant affinity towards ACE-2 enzyme as confirmed by biochemical assays such as BLItz and fluorescence polarization assays. Interestingly, more than one biochemical modifications were adopted in ACIS in order to enhance the inhibitory action of ACIS and hence called as KEpTide™. Consequently, a monolayer invasion assay, plaque assay and dual immunofluorescence analysis further revealed that KEpTide™ efficiently mitigated the infection of SARS-CoV2 in vitro in VERO E6 cells. Finally, evaluating the relative abundance of ACIS in lungs and the potential side-effects in vivo in mice, our current study discovers a novel KepTide™ therapy that is safe, stable, and robust to attenuate the infection of SARS-CoV2 virus if administered intranasally. INTERNATIONAL REGISTERED REPORT RR2-https://doi.org/10.1101/2020.10.13.337584


2021 ◽  
Vol 12 ◽  
pp. 204173142098752
Author(s):  
Nadiah S Sulaiman ◽  
Andrew R Bond ◽  
Vito D Bruno ◽  
John Joseph ◽  
Jason L Johnson ◽  
...  

Human saphenous vein (hSV) and synthetic grafts are commonly used conduits in vascular grafting, despite high failure rates. Decellularising hSVs (D-hSVs) to produce vascular scaffolds might be an effective alternative. We assessed the effectiveness of a detergent-based method using 0% to 1% sodium dodecyl sulphate (SDS) to decellularise hSV. Decellularisation effectiveness was measured in vitro by nuclear counting, DNA content, residual cell viability, extracellular matrix integrity and mechanical strength. Cytotoxicity was assessed on human and porcine cells. The most effective SDS concentration was used to prepare D-hSV grafts that underwent preliminary in vivo testing using a porcine carotid artery replacement model. Effective decellularisation was achieved with 0.01% SDS, and D-hSVs were biocompatible after seeding. In vivo xeno-transplantation confirmed excellent mechanical strength and biocompatibility with recruitment of host cells without mechanical failure, and a 50% patency rate at 4-weeks. We have developed a simple biocompatible methodology to effectively decellularise hSVs. This could enhance vascular tissue engineering toward future clinical applications.


2021 ◽  
Vol 22 (13) ◽  
pp. 7099
Author(s):  
Pradeep Kumar Kopparapu ◽  
Meghshree Deshmukh ◽  
Zhicheng Hu ◽  
Majd Mohammad ◽  
Marco Maugeri ◽  
...  

Staphylococcal aureus (S. aureus), a Gram-positive bacteria, is known to cause various infections. Extracellular vesicles (EVs) are a heterogeneous array of membranous structures secreted by cells from all three domains of life, i.e., eukaryotes, bacteria, and archaea. Bacterial EVs are implied to be involved in both bacteria–bacteria and bacteria–host interactions during infections. It is still unclear how S. aureus EVs interact with host cells and induce inflammatory responses. In this study, EVs were isolated from S. aureus and mutant strains deficient in either prelipoprotein lipidation (Δlgt) or major surface proteins (ΔsrtAB). Their immunostimulatory capacities were assessed both in vitro and in vivo. We found that S. aureus EVs induced pro-inflammatory responses both in vitro and in vivo. However, this activity was dependent on lipidated lipoproteins (Lpp), since EVs isolated from the Δlgt showed no stimulation. On the other hand, EVs isolated from the ΔsrtAB mutant showed full immune stimulation, indicating the cell wall anchoring of surface proteins did not play a role in immune stimulation. The immune stimulation of S. aureus EVs was mediated mainly by monocytes/macrophages and was TLR2 dependent. In this study, we demonstrated that not only free Lpp but also EV-imbedded Lpp had high pro-inflammatory activity.


Sign in / Sign up

Export Citation Format

Share Document