Application of post-combustion ultra-low NOx emissions technology on coal slime solid waste circulating fluidized bed boilers

2022 ◽  
Vol 137 ◽  
pp. 72-80
Author(s):  
Yuan Xiao ◽  
Guoliang Song ◽  
Zhao Yang ◽  
Xueting Yang ◽  
Chao Wang ◽  
...  
2004 ◽  
Vol 8 (2) ◽  
pp. 107-126 ◽  
Author(s):  
Jaakko Saastamoinen

New process concepts in energy production and biofuel, which are much more reactive than coal, call for better controllability of the combustion in circulating fluidized bed boilers. Simplified analysis describing the dynamics of combustion in fluidized bed and circulating fluidized bed boilers is presented. Simple formulas for the estimation of the responses of the burning rate and fuel inventory to changes in fuel feeding are presented. Different changes in the fuel feed, such as an impulse, step change, linear increase and cyclic variation are considered. The dynamics of the burning with a change in the feed rate depends on the fuel reactivity and particle size. The response of a fuel mixture with a wide particle size distribution can be found by summing up the effect of different fuel components and size fractions. Methods to extract reaction parameters form dynamic tests in laboratory scale reactors are discussed. The residence time of fuel particles in the bed and the resulting char inventory in the bed decrease with increasing fuel reactivity and differences between coal and biomass is studied. The char inventory affects the stability of combustion. The effect of char inventory and oscillations in the fuel feed on the oscillation of the flue gas oxygen concentration is studied by model calculation. A trend found by earlier measurements is explained by the model.


Author(s):  
Leming Cheng ◽  
Zhongyang Luo ◽  
Zhenglun Shi ◽  
Haixiao Zheng ◽  
Qinghui Wang ◽  
...  

Combustion behavior and SO2, NOx emissions of anthracite coal in a circulating fluidized bed are reported in this paper. Experimental researches were done on a 1 MWt circulating fluidized bed facility with a 0.31 m × 0.31 m cross section and 11.2 m height combustor. The anthracite coal with 6.28% volatile and 3.76% sulfur content burns steadily during the test. The bed was operated under different temperature, Ca/S ratio and excess air. A limestone containing 75% CaCO3 and 15% MgCO3 was used as the sulfur sorbent. Results show that the SO2 emission varies with operating bed temperature and more than 90% sulfur capture efficiency can be reached while Ca/S is about 3. With Rosemount Analytical NGA2000, N2O, NO and NO2 were also measured in the test. It was found the majority content of NOx was NO and the least was NO2. Those NOx emissions change highly with the excess air number.


2010 ◽  
Vol 24 (4) ◽  
pp. 2570-2575 ◽  
Author(s):  
Wei Wang ◽  
Xiaodong Si ◽  
Hairui Yang ◽  
Hai Zhang ◽  
Junfu Lu

Sign in / Sign up

Export Citation Format

Share Document