Evaluation of selected ubiquitous contaminants in the aquatic environment and their transformation products. A pilot study of their removal from a sewage treatment plant

2011 ◽  
Vol 45 (6) ◽  
pp. 2331-2341 ◽  
Author(s):  
M.J. Martínez Bueno ◽  
S. Uclés ◽  
M.D. Hernando ◽  
E. Dávoli ◽  
A.R. Fernández-Alba
Author(s):  
John P. Sumpter

Tens of thousands of man-made chemicals are in everyday use in developed countries. A high proportion of these, or their transformation products, probably reach the aquatic environment. A considerable amount is known about the environmental concentrations of some of these chemicals (such as metals), especially the regulated ones, but little or nothing is known about the majority. In densely populated countries, most or all rivers will receive both diffuse (e.g. agricultural runoff) and point source (e.g. sewage treatment plant effluent) inputs, and hence be contaminated with complex, ill-defined mixtures of chemicals. Most freshwater organisms will be exposed, to varying degrees, to this contamination. The number of species exposed is in the thousands, and quite possibly tens of thousands. Little is known about whether or not these species are adversely affected by the chemicals present in their environment. Often it is not even known what species are present, let alone whether they are affected by the chemicals present. In a few high-profile cases (e.g. tributyl tin causing imposex in molluscs and oestrogens ‘feminizing’ male fish), chemicals have undoubtedly adversely affected aquatic species, occasionally leading to population crashes. Whether or not other chemicals are affecting less visible species (such as most invertebrates) is largely unknown. It is possible that only very few chemicals in the freshwater environment are adversely affecting wildlife, but it is equally possible that some effects of chemicals are, as yet, undiscovered (and may remain so). Nor it is clear which chemicals may pose the greatest risk to aquatic organisms. All these uncertainties leave much to chance, yet designing a regulatory system that would better protect aquatic organisms from chemicals is difficult. A more flexible and intelligent strategy may improve the current situation. Finally, the risk due to chemicals is put into context with the many other threats, such as alien species and new diseases that undoubtedly can pose significant risks to aquatic ecosystems.


2017 ◽  
Vol 35 (1) ◽  
pp. 281-289 ◽  
Author(s):  
Wioletta Żarnowiec ◽  
Agnieszka Policht-Latawiec ◽  
Agnieszka Pytlik

AbstractThe paper presents variability of physicochemical parameter concentrations and determined the potential and chemical status of water in the Graniczna Woda stream, the right bank tributary to the Stoła River. The stream catchment area of 41.5 km2 is covered mainly by forests. A lowland stream flows through part of the Upper Silesia Industrial Region through three districts. A biological-mechanical municipal sewage treatment plant operates in the area of Miasteczko Śląskie, as well as a factory sewage treatment plant of Zinc Plant. The data base used in the papers consisted of the results obtained from the Provincial Inspectorate of the Environmental Protection in Katowice, monthly analyses of water samples collected in the years 2009–2013 in the control-measurement points located by the mouth of the Stoła River. 34 physicochemical indices were analyzed in the paper. Statistically significant upward trends were determined over the period of investigations for values of electrical conductivity (EC), total suspended solids, Cl, SO4, NO2-N and Zn in the stream water. Statistically significant downward trend was noted for total hardness. It was stated that both the potential and chemical status o the stream water were below good. Exceeded limit values for quality class II determined for oxygen and organic indices (chemical oxygen demand COD-Mn, total organic carbon TOC), salinity (EC, SO4, Cl, Ca, hardness) and biogenic indices and substances particularly harmful for aquatic environment (Zn, Tl) as well as exceeded allowable heavy metal concentrations may evidence a constant inflow of heavy metals to the aquatic environment of the Graniczna Woda stream from municipal and industrial sewage.


2012 ◽  
Vol 65 (5) ◽  
pp. 833-839 ◽  
Author(s):  
H. Fr. Schröder ◽  
J. L. Tambosi ◽  
R. F. Sena ◽  
R. F. P. M. Moreira ◽  
H. J. José ◽  
...  

Pharmaceutical compounds such as non-steroidal anti-inflammatory drugs (NSAIDs) and antibiotics have been detected in sewage treatment plant (STP) effluents, surface and ground water and even in drinking water all over the world, and therefore have developed as compounds of concern. Membrane bioreactor (MBR) treatment has gained significant popularity as an advanced wastewater treatment technology and might be effective for an advanced removal of these pollutants. This paper evaluates the treatment of wastewater containing three NSAIDs (acetaminophen, ketoprofen and naproxen) and three antibiotics (roxithromycin, sulfamethoxazole and trimethoprim) performed in two MBRs with sludge retention times (SRTs) of 15 (MBR-15) and 30 (MBR-30) days over a period of four weeks. It was observed that NSAIDs were removed with higher efficiencies than the antibiotics for both MBRs, and the MBR-30 presented higher removal efficiencies for all the compounds than obtained by MBR-15. Removal rates ranged from 55% (sulfamethoxazole) up to 100% (acetaminophen, ketoprofen). Besides mineralisation biological transformation products of ketoprofen and naproxen produced by wastewater biocoenosis were identified in both MBR permeates using liquid chromatography coupled with mass spectrometry (LC-MS). The results indicated the importance of investigating the environmental fate of pharmaceuticals and their transformation products reaching the environment.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2008 ◽  
Vol 37 (2) ◽  
Author(s):  
Maciej Walczak

Changes of microbial indices of water quality in the Vistula and Brda rivers as a result of sewage treatment plant operationThis paper reports the results of studies of microbiological changes in the water quality of the Vistula and Brda rivers after the opening of sewage treatment plants in Bydgoszcz. The study involved determining the microbiological parameters of water quality. Based on the results obtained, it was found that the quality of the water in both rivers had improved decidedly after the opening of the plants, although an increased number of individual groups of microorganisms was found at the treated sewage outlet from one of the plants.


2000 ◽  
Vol 36 (4) ◽  
pp. 161-171
Author(s):  
KENITSU KONNO ◽  
NAOKI ABE ◽  
YOSHIRO SATO ◽  
KOJI AKAMATSU ◽  
MAKOTO ABE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document