Presence of biofilms on ultrafiltration membrane surfaces increases the quality of permeate produced during ultra-low pressure gravity-driven membrane filtration

2014 ◽  
Vol 60 ◽  
pp. 164-173 ◽  
Author(s):  
Nicolas Derlon ◽  
Joao Mimoso ◽  
Theresa Klein ◽  
Stefan Koetzsch ◽  
Eberhard Morgenroth
Chemosphere ◽  
2017 ◽  
Vol 172 ◽  
pp. 21-28 ◽  
Author(s):  
An Ding ◽  
Jinlong Wang ◽  
Dachao Lin ◽  
Xiaobin Tang ◽  
Xiaoxiang Cheng ◽  
...  

2010 ◽  
Vol 5 (4) ◽  
Author(s):  
J. L. Manuszak ◽  
M. MacPhee ◽  
S. Liskovich ◽  
L. Feldsher

The City of Baltimore, Maryland is one of many US cities faced with challenges related to increasing potable water demands, diminishing fresh water supplies, and aging infrastructure. To address these challenges, the City recently undertook a $7M study to evaluate water supply and treatment alternatives and develop the conceptual design for a new 120 million gallon per day (MGD) water treatment plant. As part of this study, an innovative raw water management tool was constructed to help model source water availability and predicted water quality based on integration of a new and more challenging surface water supply. A rigorous decision-making approach was then used to screen and select appropriate treatment processes. Short-listed treatment strategies were demonstrated through a year-long pilot study, and process design criteria were collected in order to assess capital and operational costs for the full-scale plant. Ultimately the City chose a treatment scheme that includes low-pressure membrane filtration and post-filter GAC adsorption, allowing for consistent finished water quality irrespective of which raw water supply is being used. The conceptual design includes several progressive concepts, which will: 1) alleviate treatment limitations at the City's existing plants by providing additional pre-clarification facilities at the new plant; and 2) take advantage of site conditions to design and operate the submerged membrane system by gravity-induced siphon, saving the City significant capital and operations and maintenance (O&M) costs. Once completed, the new Fullerton Water Filtration Plant (WFP) will be the largest low-pressure membrane plant in North America, and the largest gravity-siphon design in the world.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 513-520 ◽  
Author(s):  
O. Mizuno ◽  
H. Takagi ◽  
T. Noike

The biological sulfate removal in the acidogenic bioreactor with an ultrafiltration membrane system was investigated at 35°C. Sucrose was used as the sole organic substrate. The sulfate concentration in the substrate ranged from 0 to 600mgS·1−1. The chemostat reactor was operated to compare with the membrane bioreactor. The fouling phenomenon caused by FeS precipitate was observed at higher concentration of sulfate. However, it was possible to continuously operate the membrane bioreactor by cleaning the membrane. The efficiency of sulfate removal by sulfate reduction reached about 100% in the membrane bioreactor, and 55 to 87% of sulfide was removed from the permeate by the membrane filtration. The composition of the metabolite was remarkably changed by the change in sulfate concentration. When the sulfate concentration increased, acetate and 2-proponol significantly increased while n-butyrate and 3-pentanol decreased. The sulfate-reducing bacteria play the role as acetogenic bacteria consuming volatile fatty acids and alcohols as electron donors under sulfate-rich conditions. The results show that the acidogenesis and sulfate reduction simultaneously proceed in the membrane bioreactor.


2009 ◽  
Vol 8 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Marta Sofia Valente ◽  
Paulo Pedro ◽  
M. Carmen Alonso ◽  
Juan J. Borrego ◽  
Lídia Dionísio

Monitoring the microbiological quality of water used for recreational activities is very important to human public health. Although the sanitary quality of recreational marine waters could be evaluated by standard methods, they are time-consuming and need confirmation. For these reasons, faster and more sensitive methods, such as the defined substrate-based technology, have been developed. In the present work, we have compared the standard method of membrane filtration using Tergitol-TTC agar for total coliforms and Escherichia coli, and Slanetz and Bartley agar for enterococci, and the IDEXX defined substrate technology for these faecal pollution indicators to determine the microbiological quality of natural recreational waters. ISO 17994:2004 standard was used to compare these methods. The IDEXX for total coliforms and E. coli, Colilert®, showed higher values than those obtained by the standard method. Enterolert® test, for the enumeration of enterococci, showed lower values when compared with the standard method. It may be concluded that more studies to evaluate the precision and accuracy of the rapid tests are required in order to apply them for routine monitoring of marine and freshwater recreational bathing areas. The main advantages of these methods are that they are more specific, feasible and simpler than the standard methodology.


Author(s):  
Peng Tang ◽  
Mengchao Shi ◽  
Xin Li ◽  
Yongli Zhang ◽  
Dong Lin ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
A. Laorko ◽  
Z. Li ◽  
W. Youravong ◽  
S. Tongjitpakdee ◽  
S. Chantachum

Coconut water has been considered as a nutritional, refreshing and highly isotonic beverage with delicate aroma and flavor. In food sterilization technique, thermal processing, however tends to reduce these beneficial properties especially estrogen hormone and flavor. To overcome this limitation, this study therefore aimed to clarified and sterilized coconut water using non–thermal processing, membrane filtration. Hollow fiber microfiltration (MF) membrane with pore size of 0.1 and 0.2 μm and ultrafiltration (UF) membrane with molecular weight cut–off (MWCO) of 100 and 30 kDa were used. The effect of membrane pore size and MWCO on quality of clarified juice, permeate flux and fouling were studied. It was found that fresh coconut water and clarified coconut water obtained from MF and UF did not show difference in pH, total soluble solid, reducing sugar, estrogen hormone and minerals including calcium, magnesium, phosphorus, potassium and sodium. The results from microbiological analysis of the clarified coconut water showed that sterilized of coconut water was obtained using either MF or UF membranes. This microbiological quality of clarified coconut water was met the Thai legislation for juice and drinks. The permeate flux of MF was much higher than those of UF while the fouling resistance of UF membrane was much higher than those of MF membrane. The permeate flux of membrane with pore size of 0.1 £gm was slightly lower than that of membrane with pore size of 0.2 μm. The results also indicated that the major fouling of both MF and UF membranes was reversible. The irreversible fouling resistance of 0.1 μm membrane was the lowest and most of this irreversible fouling was external irreversible fouling, formed on the membrane surface. According to these results, it could be concluded that 0.1 μm membrane was the most suitable membrane for clarification and sterilization of coconut water. In addition, the effects of TMP, cross flow velocity (CFV) and the % recovery on permeate flux in batch concentration mode were also studied. It was found that the permeate flux of 0.1 μm membrane was significantly increased with increasing CFV and decreased as % recovery increased. These results suggested that permeate flux during MF of coconut water was dependent on reversible fouling and could be improved by using hydrodynamic modification techniques.


Waterlines ◽  
2021 ◽  
Vol 40 (2) ◽  
pp. 92-106
Author(s):  
Lukas Dössegger ◽  
Alan Tournefier ◽  
Laura Germann ◽  
Nicola Gärtner ◽  
Timon Huonder ◽  
...  

Recontamination during transport and storage is a common challenge of water supply in low-income settings, especially if water is collected manually. Chlorination is a strategy to reduce recontamination. We assessed seven low-cost, non-electrically powered chlorination devices in gravity-driven membrane filtration (GDM) kiosks in eastern Uganda: one floater, two in-line dosers, three end-line dosers (tap-attached), and one manual dispenser. The evaluation criteria were dosing consistency, user-friendliness, ease of maintenance, local supply chain, and cost. Achieving an adequate chlorine dosage (∼2 mg/L at the tap and ≥ 0.2 mg/L after 24 h of storage in a container) was challenging. The T-chlorinator was the most promising option for GDM kiosks: it achieved correct dosage (CD, 1.5–2.5 mg/L) with a probability of 90 per cent, was easy to use and maintain, economical, and can be made from locally available materials. The other in-line option, the chlorine-dosing bucket (40 per cent CD) still needs design improvements. The end-line options AkvoTur (67 per cent CD) and AquatabsFlo® (57 per cent CD) are easy to install and operate at the tap, but can be easily damaged in the GDM set-up. The Venturi doser (52 per cent CD) did not perform satisfactorily with flow rates > 6 L/min. The chlorine dispenser (52 per cent CD) was robust and user-friendly, but can only be recommended if users comply with chlorinating the water themselves. Establishing a sustainable supply chain for chlorine products was challenging. Where solid chlorine tablets were locally rarely available, the costs of liquid chlorine options were high (27–162 per cent of the water price).


Sign in / Sign up

Export Citation Format

Share Document