Wide range of wave attenuation in beam-supported stepped hybrid phononic crystals

Wave Motion ◽  
2022 ◽  
Vol 108 ◽  
pp. 102827
Author(s):  
J.C. Guo ◽  
J.R. Li ◽  
L. Zhang ◽  
Z. Zhang
Author(s):  
Saeed Mohammadi ◽  
Abdelkrim Khelif ◽  
Ryan Westafer ◽  
Eric Massey ◽  
William D. Hunt ◽  
...  

Periodic elastic structures, called phononic crystals, show interesting frequency domain characteristics that can greatly influence the performance of acoustic and ultrasonic devices for several applications. Phononic crystals are acoustic counterparts of the extensively-investigated photonic crystals that are made by varying material properties periodically. Here we demonstrate the existence of phononic band-gaps for surface acoustic waves (SAWs) in a half-space of two dimensional phononic crystals consisting of hexagonal (honeycomb) arrangement of air cylinders in a crystalline Silicon background with low filling fraction. A theoretical calculation of band structure for bulk wave using finite element method is also achieved and shows that there is no complete phononic band gap in the case of the low filling fraction. Fabrication of the holes in Silicon is done by optical lithography and deep Silicon dry etching. In the experimental characterization, we have used slanted finger interdigitated transducers deposited on a thin layer of Zinc oxide (sputtered on top of the phononic crystal structure to excite elastic surface waves in Silicon) to cover a wide range of frequencies. We believe this to be the first reported demonstration of phononic band-gap for SAWs in a hexagonal lattice phononic crystal at such a high frequency.


Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. D1-D7 ◽  
Author(s):  
Yaping Zhu ◽  
Ilya Tsvankin ◽  
Pawan Dewangan ◽  
Kasper van Wijk

Anisotropic attenuation can provide sensitive attributes for fracture detection and lithology discrimination. This paper analyzes measurements of the P-wave attenuation coefficient in a transversely isotropic sample made of phenolic material. Using the spectral-ratio method, we estimate the group (effective) attenuation coefficient of P-waves transmitted through the sample for a wide range of propagation angles (from [Formula: see text] to [Formula: see text]) with the symmetry axis. Correction for the difference between the group and phase angles and for the angular velocity variation help us to obtain the normalized phase attenuation coefficient [Formula: see text] governed by the Thomsen-style attenuation-anisotropy parameters [Formula: see text] and [Formula: see text]. Whereas the symmetry axis of the angle-dependent coefficient [Formula: see text] practically coincides with that of the velocity function, the magnitude of the attenuation anisotropy far exceeds that of the velocity anisotropy. The quality factor [Formula: see text] increases more than tenfold from the symmetry axis (slow direction) to the isotropy plane (fast direction). Inversion of the coefficient [Formula: see text] using the Christoffel equation yields large negative values of the parameters [Formula: see text] and [Formula: see text]. The robustness of our results critically depends on several factors, such as the availability of an accurate anisotropic velocity model and adequacy of the homogeneous concept of wave propagation, as well as the choice of the frequency band. The methodology discussed here can be extended to field measurements of anisotropic attenuation needed for AVO (amplitude-variation-with-offset) analysis, amplitude-preserving migration, and seismic fracture detection.


2014 ◽  
Vol 28 (23) ◽  
pp. 1450187 ◽  
Author(s):  
Jing Li ◽  
Fugen Wu ◽  
Huilin Zhong ◽  
Xin Zhang ◽  
Yuanwei Yao

Analysis is given to acoustic directional radiation tuned by rotating square rods in two-dimensional (2D) solid–fluid phononic crystals (PC). The contour line method is introduced which predicts how the acoustic waves propagate at different frequency. As a specific example, for the systems of steel rods with square cross-section in a water host, we employ this approach to the analysis of the directivity successfully. The directional radiation frequency of two lowest bands are studied in this paper. The results show that the directional radiation frequency can be turned in a wide range by rotating the square rods. While the directivity of acoustic propagation keeps unchanged when the acoustic directional radiation frequency is located in the same band. Moreover, PCs exhibit excellent characteristic of single radiation branch as a corner cut off in a finite structure. Our approach may supply a new way to tune the directional radiation frequency.


2021 ◽  
Vol 163 ◽  
pp. 107665
Author(s):  
Emad Panahi ◽  
Ali Hosseinkhani ◽  
Mohammad Farid Khansanami ◽  
Davood Younesian ◽  
Mostafa Ranjbar

2020 ◽  
Author(s):  
◽  
Xianchen Xu

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] "Metamaterials have been extensively developed in many areas over the past two decades, a great deal of research has been conducted on acoustic/elastic metamaterials exhibiting unusual dynamic effective material properties produced by artificially engineered microstructures. While most of the studies are still scattered, superficial delineations and lack of effective practical application. To promote the application of metamaterials, we designed the structures to explore the metamaterials application in elastic wave mitigation, elastic cloaking, and acoustic wave modulation, where all these techniques can be used to mitigate the wave inside the structure and ensure the safety of the target. For wave mitigation, vibration suppression at subwavelength scales is of great interest in acoustic and/or elastic metamaterial engineering, which has a wide range of potential applications requiring dynamic stabilities by using light-weight structures and materials. Thus, we propose the concept of bio-inspired metamaterials with hierarchically organized local resonators, which possess the ability to efficiently tailor elastic wave attenuation to various frequency regions through different hierarchical designs. Wave dispersion relations and bandgap behaviors of one-dimensional lumped mass-spring hierarchical metamaterials are characterized first with outward and inward hierarchical configurations. A honeycomb hierarchical lattice with embedded rubber coated lead cylinders is then designed to demonstrate the vibration suppression at subwavelength scales in two separate frequency regions, where the first-order outward hierarchy is selected. Good agreement between experimental and numerical results is observed in the frequency response functions of a metamaterial sample. The hierarchical metamaterials are proposed to be efficient solutions in elastic wave bandgap engineering at subwavelength scales, which will benefit light-weight passive structures for low-frequency vibration and/or elastic wave mitigation. To further improve the wave mitigation performance of designed metamaterials, a nonlinear elastic metamaterial (NEM) is presented for broadband wave attenuation by incorporating strongly nonlinear elements in a triatomic microstructural design. The nonlinear elements are considered between the primary and secondary orders of the triatomic model where the primary focus is the influence of damping between the secondary and lowest orders of the triatomic microstructure, respectively. The NEM with both weak and strong damping considered is investigated for efficient attenuation of transient blast waves. The fourth-order Runge-Kutta numerical method is used for obtaining the attenuation, transmission, and reflection coefficients of the NEM. It is found that the NEM can expand the bandwidth of the bandgap and enhance the absorption of elastic waves compared with a purely linear elastic metamaterial. Next, we explore an elastic cloak that can be applied to an arbitrary inclusion to make it indistinguishable from the background medium. Cloaking against elastic disturbances has been demonstrated using several designs and gauges. None tolerate the coexistence of normal and shear stresses due to a shortage of physical realization of transformation-invariant elastic materials. Here, we overcome this limitation to design and fabricate a new class of polar materials with a distribution of body torque that exhibits asymmetric stresses. A static cloak for full two-dimensional elasticity is thus constructed based on the transformation method. The proposed cloak is made of a functionally graded multi-layered lattice embedded in an isotropic continuum background. While one layer is tailored to produce a target elastic behavior, the other layers impose a set of kinematic constraints equivalent to a distribution of body torque that breaks the stress symmetry. Experimental testing under static compressive and shear loads demonstrate encouraging cloaking performance in good agreement with our theoretical prediction. The work sets a precedent in the field of transformation elasticity and should find applications in mechanical stress shielding and stealth technologies. In the last, to mitigate the acoustic wave in one direction and let free propagation in another direction, we then present the physical realization of a nonreciprocal acoustic material with space-time modulated interfacial conditions to generate acoustic topological pumping and nonreciprocal transport. The modulated material inspired by a water wheel consists of a helix rotating around a slotted tube at a controllable speed. When the helix rotates, it creates moving interfaces between the tube and the external medium at a constant speed. Experiments demonstrate acoustic nonreciprocity and topologically robust bulk-edge correspondences for this material which is in good agreement with analytical and numerical predictions. These findings provide insight into practical implications of topological modes in acoustics and the implementation of higher-dimensional topological acoustics that use time as a synthetic dimension. All the proposed work will promote the application of metamaterials in structure protection and wave mitigation."--Summary.


Ultrasonics ◽  
2019 ◽  
Vol 94 ◽  
pp. 419-429 ◽  
Author(s):  
Yafeng Chen ◽  
Di Guo ◽  
Yang Fan Li ◽  
Guangyao Li ◽  
Xiaodong Huang

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vivek Gupta ◽  
Sondipon Adhikari ◽  
Bishakh Bhattacharya

AbstractContinuous demand for the improvement of mechanical performance of engineering structures pushes the need for metastructures to fulfil multiple functions. Extensive work on lattice-based metastructure has shown their ability to manipulate wave propagation and producing bandgaps at specific frequency ranges. Enhanced customizability makes them ideal candidates for multifunctional applications. This paper explores a wide range of nonlinear mechanical behavior that can be generated out of the same lattice material by changing the building block into dome shaped structures which improves the functionality of material significantly. We propose a novel hourglass shaped lattice metastructure that takes advantage of the combination of two oppositely oriented coaxial domes, providing an opportunity for higher customizability and the ability to tailor its dynamic response. Six new classes of hourglass shaped lattice metastructures have been developed through combinations of solid shells, regular honeycomb lattices and auxetic lattices. Numerical simulation, analytical modelling, additive layer manufacturing (3D printing) and experimental testing are implemented to justify the evaluation of their mechanics and reveal the underlying physics responsible for their unusual nonlinear behaviour. We further obtained the lattice dependent frequency response and damping offered by the various classes of hourglass metastructures. This study paves the way for incorporating hourglass based oscillators to be used as building block of future mechanical metamaterials, leading to a new class of tunable metamaterial over a wide range of operating frequencies. The proposed class of metastructure will be useful in applications where lightweight and tunable properties with broadband vibration suppression and wave attenuation abilities are necessary.


Acoustics ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 25-41
Author(s):  
Muhammad ◽  
C.W. Lim ◽  
Andrew Y. T. Leung

The current century witnessed an overwhelming research interest in phononic crystals (PnCs) and acoustic metamaterials (AMs) research owing to their fantastic properties in manipulating acoustic and elastic waves that are inconceivable from naturally occurring materials. Extensive research literature about the dynamical and mechanical properties of acoustic metamaterials currently exists, and this maturing research field is now finding possible industrial and infrastructural applications. The present study proposes a novel 3D composite multilayered phononic pillars capable of inducing two-dimensional and three-dimensional complete bandgaps (BGs). A phononic structure that consisted of silicon and tungsten layers was subjected to both plane and surface acoustic waves in three-dimensional and two-dimensional periodic systems, respectively. By frequency response study, the wave attenuation, trapping/localization, transmission, and defect analysis was carried out for both plane and surface acoustic waves. In the bandgap, the localized defect state was studied for both plane and surface acoustic waves separately. At the defect state, the localization of both plane and surface acoustic waves was observed. By varying the defect size, the localized frequency can be made tailorable. The study is based on a numerical technique, and it is validated by comparison with a reported theoretical work. The findings may provide a new perspective and insight for the designs and applications of three-dimensional phononic crystals for surface acoustic wave and plane wave manipulation, particularly for energy harvesting, sensing, focusing and waves isolation/attenuation purposes.


2021 ◽  
Vol 26 (3) ◽  
pp. 30-37
Author(s):  
Z. Eremenko ◽  
◽  
V. Pashynska ◽  
K. Kuznetsova ◽  
O. Shubnyi ◽  
...  

Subject and Purpose. This study focuses on the original waveguide-differential dielectrometer designed for complex permittivity measurements of high-loss liquids in the microwave range towards the determination of pharmaceutical ingredient concentrations in water solutions at room temperature. The suitability of the device and effectiveness of the dielectrometry method are tested on such pharmaceutical ingredients as lincomycin and levofloxacin over a wide range of concentrations. Methods and Methodology. The main idea of the method consists in that the complex propagation coefficients of the HE11 wave are obtained from the amplitude and phase shift differences acquired by the wave after it has passed through the two measuring cells of the waveguide-differential dielectrometer. Results. We have shown that the proposed dielectometry method allows a real-time determination of pharmaceutical ingredient concentrations in water solution by measuring the wave attenuation and phase shift differences. We have found that unless concentrations of pharmaceutical ingredients are low, few free water molecules in water solution are bound to the pharmaceutical ingredients. The number of free water molecules in solution decreases as the concentration of pharmaceutical ingredients rises. Conclusion. The current study confirms that the dielectometry method and the device developed provide effective determination of pharmaceutical ingredient concentrations in water solutions.


Sign in / Sign up

Export Citation Format

Share Document