Wear life prediction method of crowned double helical gear drive in point contact mixed elastohydrodynamic lubrication

Wear ◽  
2021 ◽  
pp. 204041
Author(s):  
Hongbing Wang ◽  
Lewei Tang ◽  
Changjiang Zhou ◽  
Zhaoyao Shi
2014 ◽  
Vol 904 ◽  
pp. 340-344
Author(s):  
Shi Qiang Wan ◽  
Chun Hua Zhao ◽  
Hai Jiang Dong ◽  
Wei Wang ◽  
Xian You Zhong

The paper analyzed on wear failure mechanism of the helical gear of wind turbine. Then, according to the characteristics of the gear transmission, the helical gear integrated wear value was calculated. Considering gear transmission steadily, the ultimate integrated wear quantity was determined by gear transmission accuracy. Finally, the helical gear wear life model was derived, which had an important guiding significance on the wear life prediction of helical gear pair, gear parameter optimization design and wear condition monitoring.


Mechatronics ◽  
2013 ◽  
Vol 23 (8) ◽  
pp. 1202-1214 ◽  
Author(s):  
Xin Fang ◽  
Jinyong Yao ◽  
Xizhong Yin ◽  
Xun Chen ◽  
Chunhua Zhang

Author(s):  
Yu Zang ◽  
Wei Shangguan ◽  
Baigen Cai ◽  
Huasheng Wang ◽  
Michael. G. Pecht

Author(s):  
Zongyi Mu ◽  
Yan Ran ◽  
Genbao Zhang ◽  
Hongwei Wang ◽  
Xin Yang

Remaining useful life (RUL) is a crucial indictor to measure the performance degradation of machine tools. It directly affects the accuracy of maintenance decision-making, thus affecting operational reliability of machine tools. Currently, most RUL prediction methods are for the parts. However, due to the interaction among the parts, even RUL of all the parts cannot reflect the real RUL of the whole machine. Therefore, an RUL prediction method for the whole machine is needed. To predict RUL of the whole machine, this paper proposes an RUL prediction method with dynamic prediction objects based on meta-action theory. Firstly, machine tools are decomposed into the meta-action unit chains (MUCs) to obtain suitable prediction objects. Secondly, the machining precision unqualified rate (MPUR) control chart is used to conduct an out of control early warning for machine tools’ performance. At last, the Markov model is introduced to determine the prediction objects in next prediction and the Wiener degradation model is established to predict RUL of machine tools. According to the practical application, feasibility and effectiveness of the method is proved.


2008 ◽  
Vol 385-387 ◽  
pp. 221-224
Author(s):  
Wen Ping Wu ◽  
Ya Fang Guo ◽  
Yue Sheng Wang

A quantitative life prediction method has been proposed to evaluate fatigue life during morphological evolution of precipitates in Ni-based superalloys. The method is essentially based on Eshelby’s equivalent inclusion theory and Mori-Tanaka’s mean field method. The shape stability and life prediction are discussed when the external stress and matrix plastic strain are applied. The calculated results show that the fatigue life is closely related with microstructures evolution of precipitates. The magnitude and sign of the external stress and matrix plastic strain have an important effect on fatigue life of Ni-based superalloys during the morphological evolution of precipitates.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Fengxia Lu ◽  
Xuechen Cao ◽  
Weiping Liu

AbstractA 16-degree-of-freedom dynamic model for the load contact analysis of a double helical gear considering sliding friction is established. The dynamic equation is solved by the Runge–Kutta method to obtain the vibration displacement. The method combines the friction coefficient model based on the elastohydrodynamic lubrication theory with the dynamic model, which provides a theoretical basis for the calculation of the power loss of the transmission system. Moreover, the sensitivity analysis of the parameters that affect the transmission efficiency is carried out, and an optimization method of meshing efficiency is proposed without reducing the bending strength of the gears. This method can directly guide the design of the double helical gear transmission system.


Sign in / Sign up

Export Citation Format

Share Document