scholarly journals Complete inhibition of a polyol nucleation by a micromolar biopolymer additive

2022 ◽  
pp. 100723
Author(s):  
Xin Wen ◽  
Sen Wang ◽  
Robert Ramji ◽  
Luke O. Butler ◽  
Yelena Bagdagulyan ◽  
...  
Keyword(s):  
1979 ◽  
Vol 42 (05) ◽  
pp. 1615-1619 ◽  
Author(s):  
Martin J Smith ◽  
Boyd Braem ◽  
Kent D Davis

SummaryPlatelet acetylcholinesterase (AChE) activity was measured in gel-filtered platelet preparations. Three different anticholinesteratic agents (eserine, neostigmine, and diiso- propylphosphorofluoridate) at final concentrations of 10 μM caused complete inhibition of AChE activity after 30 min incubation at room temperature with either platelet-rich plasma or gel-filtered platelets. Complete inhibition of platelet AChE had no effect on platelet aggregation, factor-3 availability, and plasma clot retraction. We conclude that platelet membrane AChE activity is not required for normal platelet function as measured by these in vitro parameters.


1984 ◽  
Vol 259 (23) ◽  
pp. 14762-14772 ◽  
Author(s):  
B S Stein ◽  
K G Bensch ◽  
H H Sussman

2010 ◽  
Vol 50 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Khawar Jabran ◽  
Muhammad Farooq ◽  
Mubshir Hussain ◽  
Muhammad Ali ◽  

Wild Oat (Avena FatuaL.) and Canary Grass (Phalaris MinorRitz.) Management Through AllelopathyEnvironmental contamination, herbicide resistance development among weeds and health concerns due to over and misuse of synthetic herbicides has led the researchers to focus on alternative weed management strategies. Allelochemicals extracted from various plant species can act as natural weed inhibitors. In this study, allelopathic extracts from four plant species sorghum [Sorghum bicolor(L.) Moench], mulberry (Morus albaL.), barnyard grass [Echinochloa crusgalli(L.) Beauv.], winter cherry [Withania somnifera(L.)] were tested for their potential to inhibit the most problematic wheat (Triticum aestivumL.) weeds wild oat (Avena fatuaL.) and canary grass (Phalaris minorRitz.). Data regarding time to start germination, time to 50% germination, mean germination time, final germination percentage, germination energy, root and shoot length, number of roots, number of leaves, and seedling fresh and dry weight was recorded for both the weeds, which showed that mulberry was the most inhibitory plant species while sorghum showed least allelopathic suppression against wild oat. Mulberry extracts resulted in a complete inhibition of the wild oat germination. The allelopathic potential for different plants against wild oat was in the order: mulberry > winter cherry > barnyard grass > sorghum. Mulberry, barnyard grass and winter cherry extracts resulted in a complete inhibition of canary grass. Sorghum however exhibited least suppressive or in some cases stimulatory effects on canary grass. Plants revealing strong allelopathic potential can be utilized to derive natural herbicides for weed control.


1963 ◽  
Vol 9 (1) ◽  
pp. 117-127
Author(s):  
E. R. Blakley

The rate of fermentation of glucose by suspensions of Candida utilis at acid pH values is reduced by alkyl benzene sulphonate in the range 75 to 250 γ/ml. Concentrations of alkyl benzene sulphonate below 75 γ/ml decrease the rate of fermentation of glucose above pH 7 and respiration at all pH values. An upper limit of 70 to 90% inhibition of fermentation or respiration is obtained at concentrations of alkyl benzene sulphonate above 250 γ/ml, except at pH 4.2 where complete inhibition is obtained. The effect of alkyl benzene sulphonate on the fermentation of glucose by yeast protoplasts is similar to the effect observed for intact yeasts. Some enzymatic reactions of cell-free extracts are inhibited by concentrations of alkyl benzene sulphonate lower than that required to affect fermentation by intact cells. The enzyme components of the cell-free preparation appear to vary in their sensitivity to the surfactant. The results support the view that the surfactant in the micellar form disrupts the cell wall of the yeast, and unassociated molecules inactivate some enzymes vital for the metabolism of the cell.


1988 ◽  
Vol 51 (7) ◽  
pp. 525-530 ◽  
Author(s):  
MOUSTAFA A. EL-SHENAWY ◽  
ELMER H. MARTH

The ability of Listeria monocytogenes to grow or survive was determined using tryptose broth at pH 5.6 or 5.0, supplemented with 0, 0.05. 0.1, 0.15. 0.2. 0.25 or 0.3% sodium benzoate, and incubated at 4,13,21 or 35°C. The bacterium grew in benzoate-free controls under all conditions except at 4°C and pH 5.0. At pH 5.6 and 4°C, after 60 d, L. monocytogenes (initial population ca. 103/ml) was inactivated by 0.2, 0.25 and 0.3% sodium benzoate. Other concentrations of benzoate permitted slight growth during the first 36 d of incubation followed by a decrease in populations of the pathogen. At pH 5.0 and 4°C, from 0.15 to 0.3% benzoate completely inactivated the pathogen in 24 to 30 d, whereas the other concentrations caused a gradual decrease in the population during the 66-d incubation period. At 13°C and pH 5.6, L. monocytogenes grew (more at lower than higher concentrations of benzoate) in the presence of all concentrations of benzoate except 0.25 or 0.3%, which prohibited growth throughout a 264-h incubation period. Reducing the pH to 5.0 minimized growth at the two low concentrations of benzoate and caused slight decreases in population at the other concentrations of benzoate. At 21 and 35°C and pH 5.6, appreciable growth of L. monocytogenes occurred in the presence of 0.2% or less sodium benzoate, whereas higher concentrations were inhibitory, permitting little if any growth by the pathogen. Reducing the pH to 5.0 allowed limited growth of the pathogen at 21 and 35°C when the medium contained 0.05 or 0.1% sodium benzoate. Higher concentrations caused either complete inhibition or inhibition plus partial or complete inactivation of the pathogen during incubations of 117 h at 21°C or 78 h at 35°C.


2015 ◽  
Vol 47 (1–2) ◽  
pp. 131-141 ◽  
Author(s):  
M. Kuraś ◽  
H. Teleżyński

The effects of continuous incubation in hydroxyurea (HU) solutions (0.2, 0.4, 0.8 mg/ml) on germination of rape seeds and growth of young seedling axes were studied during 132 hours from initial soaking. Germination turned out to be unaffected by the treatment. Root growth was first increasingly inhibited by the HU concentration tested, but after prolonged incubation a complete arrest of the root growth was noted at all HU concentrations. The elongation growth of hypocotyls was found to be stimulated by a HU 0.2 mg/ml concentration while it was markedly suppressed by 0.4 mg/ml, and completely arrested by 0.8 mg/ml Inhibition of growth of the upright hypocotyl part at higher HU concentration was found to be accompanied by the unbending of the hooked under-cotyledonary part. It is suggested that inhibition of nuclear endomitotic DNA synthesis In elongating hypocotyl cells, suppresses only partially their growth, whereas a complete inhibition of the hypocotyl growth results from arrest of the mitochondrial DNA synthesis.


2021 ◽  
Vol 28 (3) ◽  
pp. 411-427
Author(s):  
Romuald Górski ◽  
Hanna Dorna ◽  
Agnieszka Rosińska ◽  
Dorota Szopińska ◽  
Alina Kałużewicz

Abstract The aim of the studies was to investigate the effect of camel grass, lavender, patchouli, peppermint and tea tree essential oils, and their mixtures on the in vitro growth of pathogenic fungi Cladobotryum dendroides and Mycogone perniciosa, occurring in the cultivation of button mushroom (Agaricus bisporus). The mycelial growth of the tested pathogens was evaluated on PDA medium. Essential oils were added in three doses: 0.25; 0.5 and 1 mg·cm–3 of PDA medium. Camel grass and peppermint essential oils applied at the highest dose inhibited completely the in vitro growth of C. dendroides mycelium. Lavender oil used at the amount of 1 mg·cm–3 reduced the growth of the pathogen by 90 %. In the case of M. perniciosa the complete inhibition of the pathogen’s growth was observed after the addition of camel grass oil to PDA medium, irrespective of a dose, and lavender oil at the doses of 0.5 and 1 mg·cm–3. The efficacy of the tested mixtures against M. perniciosa was high. Generally, all mixtures of essential oils, irrespective of a dose, completely controlled the growth of the pathogen. The complete inhibition of the growth of C. dendroides was observed only on the medium with the addition of the mixture of camel grass and peppermint oils at the highest dose. The conducted research showed that natural essential oils due to their antifungal properties could be useful in the Integrated Disease Management for the protection of button mushroom against diseases. They could be an effective alternative to synthetic chemical fungicides.


Sign in / Sign up

Export Citation Format

Share Document