scholarly journals Application of pseudotyped virus particles to monitor Ebola virus and SARS-CoV-2 viral entry in human cell lines

2021 ◽  
Vol 2 (4) ◽  
pp. 100818
Author(s):  
Madeleine Eichler ◽  
Ebru Aksi ◽  
Josef Pfeilschifter ◽  
Gergely Imre
2020 ◽  
Author(s):  
Claudia Pommerenke ◽  
Ulfert Rand ◽  
Cord C. Uphoff ◽  
Stefan Nagel ◽  
Margarete Zaborski ◽  
...  

AbstractAt present, the novel pandemic coronavirus SARS-CoV-2 is a major global threat to human health and hence demands united research activities at different levels. Finding appropriate cell systems for drug screening and testing molecular interactions of the virus with the host cell is mandatory for drug development and understanding the mechanisms of viral entry and replication. For this, we selected human cell lines represented in the Cancer Cell Line Encyclopedia (CCLE) based on RNA-seq data determined transcript levels of ACE2 and TMPRSS2, two membrane proteins that have been identified to aid SARS-CoV-2 entry into the host cell. mRNA and protein expression of these host factors were verified via RQ-PCR and western blot. We then tested permissiveness of these cell lines towards SARS-CoV-2 infection, cytopathic effect, and viral replication finding limited correlation between receptor expression and infectability. One of the candidate cancer cell lines, the human colon cancer cell line CL-14, tested positive for SARS-CoV-2 infection. Our data argue that SARS-CoV-2 in vitro infection models need careful selection and validation since ACE2/TMPRSS2 receptor expression on its own does not guarantee permissiveness to the virus.Author summaryIn the midst of the pandemic outbreak of corona-virus SARS-CoV-2 therapeutics for disease treatment are still to be tested and the virus-host-interactions are to be elucidated. Drug testing and viral studies are commonly conducted with genetically manipulated cells. In order to find a cell model system without genetic modification we screened human cell lines for two proteins known to facilitate entry of SARS-CoV-2. We confirmed and quantified permissiveness of current cell line infection models, but dismissed a number of receptor-positive cell lines that did not support viral replication. Importantly, ACE2/TMPRSS2 co-expression seems to be necessary for viral entry but is not sufficient to predict permissiveness of various cancer cell lines. Moreover, the expression of specific splice variants and the absence of missense mutations of the host factors might hint on successful infection and virus replication of the cell lines.


2004 ◽  
Vol 10 (5-6) ◽  
pp. 226-228
Author(s):  
L.M. Nosach ◽  
◽  
O.Yu. Povnitsa ◽  
V.L. Zhovnovata ◽  
◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 953
Author(s):  
Chuan Xu ◽  
Annie Wang ◽  
Ke Geng ◽  
William Honnen ◽  
Xuening Wang ◽  
...  

Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19), enters cells through attachment to the human angiotensin converting enzyme 2 (hACE2) via the receptor-binding domain (RBD) in the surface/spike (S) protein. Several pseudotyped viruses expressing SARS-CoV-2 S proteins are available, but many of these can only infect hACE2-overexpressing cell lines. Here, we report the use of a simple, two-plasmid, pseudotyped virus system comprising a SARS-CoV-2 spike-expressing plasmid and an HIV vector with or without vpr to investigate the SARS-CoV-2 entry event in various cell lines. When an HIV vector without vpr was used, pseudotyped SARS-CoV-2 viruses produced in the presence of fetal bovine serum (FBS) were able to infect only engineered hACE2-overexpressing cell lines, whereas viruses produced under serum-free conditions were able to infect a broader range of cells, including cells without hACE2 overexpression. When an HIV vector containing vpr was used, pseudotyped viruses were able to infect a broad spectrum of cell types regardless of whether viruses were produced in the presence or absence of FBS. Infection sensitivities of various cell types did not correlate with mRNA abundance of hACE2, TMPRSS2, or TMPRSS4. Pseudotyped SARS-CoV-2 viruses and replication-competent SARS-CoV-2 virus were equally sensitive to neutralization by an anti-spike RBD antibody in cells with high abundance of hACE2. However, the anti-spike RBD antibody did not block pseudotyped viral entry into cell lines with low abundance of hACE2. We further found that CD147 was involved in viral entry in A549 cells with low abundance of hACE2. Thus, our assay is useful for drug and antibody screening as well as for investigating cellular receptors, including hACE2, CD147, and tyrosine-protein kinase receptor UFO (AXL), for the SARS-CoV-2 entry event in various cell lines.


2021 ◽  
Vol 570 ◽  
pp. 206-213
Author(s):  
Ryohei Saito ◽  
Hiromasa Satoh ◽  
Kayo Aoba ◽  
Hajime Hirasawa ◽  
Naofumi Miwa

2011 ◽  
Vol 17 (6) ◽  
pp. 515-521 ◽  
Author(s):  
Masayuki TAKEUCHI ◽  
Katsuki OHTANI ◽  
Yanju MA ◽  
Sanae KATO ◽  
Shingo SEMBA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document