Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

2013 ◽  
Vol 319 (18) ◽  
pp. 2856-2865 ◽  
Author(s):  
Achim Salamon ◽  
Anika Jonitz-Heincke ◽  
Stefanie Adam ◽  
Joachim Rychly ◽  
Brigitte Müller-Hilke ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yu-Hee Kim ◽  
Kyung-Ah Cho ◽  
Hyun-Ji Lee ◽  
Minhwa Park ◽  
Han Su Kim ◽  
...  

The application of mesenchymal stem cells (MSCs) for treating bone-related diseases shows promising outcomes in preclinical studies. However, cells that are isolated and defined as MSCs comprise a heterogeneous population of progenitors. This heterogeneity can produce variations in the performance of MSCs, especially in applications that require differentiation potential in vivo, such as the treatment of osteoporosis. Here, we aimed to identify genetic markers in tonsil-derived MSCs (T-MSCs) that can predict osteogenic potential. Using a single-cell cloning method, we isolated and established several lines of nondifferentiating (ND) or osteoblast-prone (OP) clones. Next, we performed transcriptome sequencing of three ND and three OP clones that maintained the characteristics of MSCs and determined the top six genes that were upregulated in OP clones. Upregulation of WNT16 and DCLK1 expression was confirmed by real-time quantitative PCR, but only WNT16 expression was correlated with the osteogenic differentiation of T-MSCs from 10 different donors. Collectively, our findings suggest that WNT16 is a putative genetic marker that predicts the osteogenic potential of T-MSCs. Thus, examination of WNT16 expression as a selection criterion prior to the clinical application of MSCs may enhance the therapeutic efficacy of stem cell therapy for bone-related complications, including osteoporosis.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
June Seok Heo ◽  
Seung Gwan Lee ◽  
Hyun Ok Kim

Mesenchymal stem cells (MSCs) are a promising tool for studying intractable diseases. Unfortunately, MSCs can easily undergo cellular senescence during in vitro expansion by losing stemness. The aim of this study was to improve the stemness and differentiation of MSCs by using glabridin, a natural flavonoid. Assessments of cell viability, cell proliferation, β-galactosidase activity, differentiation, and gene expression by reverse transcription PCR were subsequently performed in the absence or presence of glabridin. Glabridin enhanced the self-renewal capacity of MSCs, as indicated by the upregulation of the OCT4 gene. In addition, it resulted in an increase in the osteogenic differentiation potential by inducing the expression of osteogenesis-related genes such as DLX5 and RUNX2. We confirmed that glabridin improved the osteogenesis of MSCs with a significant elevation in the expression of OSTEOCALCIN and OSTEOPONTIN genes. Taken together, these results suggest that glabridin enhances osteogenic differentiation of MSCs with induction of the OCT4 gene; thus, glabridin could be useful for stem cell-based therapies.


2021 ◽  
Author(s):  
Mohammad Rumman ◽  
Jyotsna Dhawan

Bone marrow mesenchymal stem cells (MSCs) are heterogeneous osteo-progenitors that are mainly responsible for bone regeneration and homeostasis. In vivo, a subpopulation of bone marrow MSCs persists in a quiescent state, providing a source of new cells for repair. Previously, we reported that induction of quiescence in hMSCs in vitro skews their differentiation potential in favour of osteogenesis while suppressing adipogenesis. Here, we uncover a new role for a protein tyrosine phosphatase, receptor type U (PTPRU) in repressing osteogenesis during quiescence. A 75 kD PTPRU protein isoform was found to be specifically induced during quiescence and down-regulated during cell cycle reactivation. Using siRNA-mediated knockdown, we report that in proliferating hMSC, PTPRU preserves self-renewal, while in quiescent hMSC, PTPRU not only maintains reversibility of cell cycle arrest but also suppresses expression of osteogenic lineage genes. Knockdown of PTPRU in proliferating or quiescent hMSC de-represses osteogenic markers, and enhances induced osteogenic differentiation. We also show that PTPRU positively regulates a β-catenin-TCF transcriptional reporter. Taken together, our study suggests a role for a quiescence-induced 75kD PTPRU isoform in modulating bone differentiation in hMSC, potentially involving the Wnt pathway.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Intekhab Islam ◽  
Gopu Sriram ◽  
Mingming Li ◽  
Yu Zou ◽  
Lulu Li ◽  
...  

Cellular therapy using stem cells in bone regeneration has gained increasing interest. Various studies suggest the clinical utility of osteoprogenitors-like mesenchymal stem cells in bone regeneration. However, limited availability of mesenchymal stem cells and conflicting evidence on their therapeutic efficacy limit their clinical application. Human embryonic stem cells (hESCs) are potentially an unlimited source of healthy and functional osteoprogenitors (OPs) that could be utilized for bone regenerative applications. However, limited ability to track hESC-derived progenies in vivo greatly hinders translational studies. Hence, in this study, we aimed to establish hESC-derived OPs (hESC-OPs) expressing green fluorescent protein (GFP) and to investigate their osteogenic differentiation potential in vitro. We fluorescently labelled H9-hESCs using a plasmid vector encoding GFP. The GFP-expressing hESCs were differentiated into hESC-OPs. The hESC-OPsGFP+ stably expressed high levels of GFP, CD73, CD90, and CD105. They possessed osteogenic differentiation potential in vitro as demonstrated by increased expression of COL1A1, RUNX2, OSTERIX, and OPG transcripts and mineralized nodules positive for Alizarin Red and immunocytochemical expression of osteocalcin, alkaline phosphatase, and collagen-I. In conclusion, we have demonstrated that fluorescently labelled hESC-OPs can maintain their GFP expression for the long term and their potential for osteogenic differentiation in vitro. In future, these fluorescently labelled hESC-OPs could be used for noninvasive assessment of bone regeneration, safety, and therapeutic efficacy.


2019 ◽  
Vol 7 (4) ◽  
pp. 507-515 ◽  
Author(s):  
Eman E. A. Mohammed ◽  
Mohamed El-Zawahry ◽  
Abdel Razik H. Farrag ◽  
Nahla N. Abdel Aziz ◽  
Wessam Sharaf-ElDin ◽  
...  

BACKGROUND: Cell therapies offer a promising potential in promoting bone regeneration. Stem cell therapy presents attractive care modality in treating degenerative conditions or tissue injuries. The rationale behind this is both the expansion potential of stem cells into a large cell population size and its differentiation abilities into a wide variety of tissue types, when given the proper stimuli. A progenitor stem cell is a promising source of cell therapy in regenerative medicine and bone tissue engineering. AIM: This study aimed to compare the osteogenic differentiation and regenerative potentials of human mesenchymal stem cells derived from human bone marrow (hBM-MSCs) or amniotic fluid (hAF-MSCs), both in vitro and in vivo studies. SUBJECTS AND METHODS: Human MSCs, used in this study, were successfully isolated from two human sources; the bone marrow (BM) and amniotic fluid (AF) collected at the gestational ages of second or third trimesters. RESULTS: The stem cells derived from amniotic fluid seemed to be the most promising type of progenitor cells for clinical applications. In a pre-clinical experiment, attempting to explore the therapeutic application of MSCs in bone regeneration, Rat lumbar spines defects were surgically created and treated with undifferentiated and osteogenically differentiated MSCs, derived from BM and second trimester AF. Cells were loaded on gel-foam scaffolds, inserted and fixed in the area of the surgical defect. X-Ray radiography follows up, and histopathological analysis was done three-four months post- operation. The transplantation of AF-MSCs or BM-MSCs into induced bony defects showed promising results. The AF-MSCs are offering a better healing effect increasing the likelihood of achieving successful spinal fusion. Some bone changes were observed in rats transplanted with osteoblasts differentiated cells but not in rats transplanted with undifferentiated MSCs. Longer observational periods are required to evaluate a true bone formation. The findings of this study suggested that the different sources; hBM-MSCs or hAF-MSCs exhibited remarkably different signature regarding the cell morphology, proliferation capacity and osteogenic differentiation potential CONCLUSIONS: AF-MSCs have a better performance in vivo bone healing than that of BM-MSCs. Hence, AF derived MSCs is highly recommended as an alternative source to BM-MSCs in bone regeneration and spine fusion surgeries. Moreover, the usage of gel-foam as a scaffold proved as an efficient cell carrier that showed bio-compatibility with cells, bio-degradability and osteoinductivity in vivo.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 339
Author(s):  
Tobias Grossner ◽  
Uwe Haberkorn ◽  
Tobias Gotterbarm

First-line analgetic medication used in the field of musculoskeletal degenerative diseases, like Nonsteroidal anti-inflammatory drugs (NSAIDs), reduces pain and prostaglandin synthesis, whereby peptic ulcers are a severe adverse effect. Therefore, proton pump inhibitors (PPI) are frequently used as a concomitant medication to reduce this risk. However, the impact of NSAIDs or metamizole, in combination with PPIs, on bone metabolism is still unclear. Therefore, human mesenchymal stem cells (hMSCs) were cultured in monolayer cultures in 10 different groups for 21 days. New bone formation was induced as follows: Group 1 negative control group, group 2 osteogenic differentiation media (OSM), group 3 OSM with pantoprazole (PAN), group 4 OSM with ibuprofen (IBU), group 5 OSM with diclofenac (DIC), group 6 OSM with metamizole (MET), group 7 OSM with ibuprofen and pantoprazole (IBU + PAN), group 8 OSM with diclofenac and pantoprazole (DIC + PAN), group 9 OSM with metamizole and pantoprazole (MET + PAN) and group 10 OSM with diclofenac, metamizole and pantoprazole (DIC + MET + PAN). Hydroxyapatite content was evaluated using high-sensitive radioactive 99mTc-HDP labeling. Within this study, no evidence was found that the common analgetic medication, using NSAIDs alone or in combination with pantoprazole and/or metamizole, has any negative impact on the osteogenic differentiation of mesenchymal stem cells in vitro. To the contrary, the statistical results indicate that pantoprazole alone (group 3 (PAN) (p = 0.016)) or diclofenac alone (group 5 (DIC) (p = 0.008)) enhances the deposition of minerals by hMSCS in vitro. There is an ongoing discussion between clinicians in the field of orthopaedics and traumatology as to whether post-surgical (pain) medication has a negative impact on bone healing. This is the first hMSC in vitro study that investigates the effects of pain medication in combination with PPIs on bone metabolism. Our in vitro data indicates that the assumed negative impact on bone metabolism is subsidiary. These findings substantiate the thesis that, in clinical medicine, the patient can receive every pain medication needed, whether or not in combination with PPIs, without any negative effects for the osteo-regenerative potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kulisara Marupanthorn ◽  
Chairat Tantrawatpan ◽  
Pakpoom Kheolamai ◽  
Duangrat Tantikanlayaporn ◽  
Sirikul Manochantr

AbstractMesenchymal stem cells (MSCs) are important in regenerative medicine because of their potential for multi-differentiation. Bone marrow, chorion and placenta have all been suggested as potential sources for clinical application. However, the osteogenic differentiation potential of MSCs derived from chorion or placenta is not very efficient. Bone morphogenetic protein-2 (BMP-2) plays an important role in bone development. Its effect on osteogenic augmentation has been addressed in several studies. Recent studies have also shown a relationship between miRNAs and osteogenesis. We hypothesized that miRNAs targeted to Runt-related transcription factor 2 (Runx-2), a major transcription factor of osteogenesis, are responsible for regulating the differentiation of MSCs into osteoblasts. This study examines the effect of BMP-2 on the osteogenic differentiation of MSCs isolated from chorion and placenta in comparison to bone marrow-derived MSCs and investigates the role of miRNAs in the osteogenic differentiation of MSCs from these sources. MSCs were isolated from human bone marrow, chorion and placenta. The osteogenic differentiation potential after BMP-2 treatment was examined using ALP staining, ALP activity assay, and osteogenic gene expression. Candidate miRNAs were selected and their expression levels during osteoblastic differentiation were examined using real-time RT-PCR. The role of these miRNAs in osteogenesis was investigated by transfection with specific miRNA inhibitors. The level of osteogenic differentiation was monitored after anti-miRNA treatment. MSCs isolated from chorion and placenta exhibited self-renewal capacity and multi-lineage differentiation potential similar to MSCs isolated from bone marrow. BMP-2 treated MSCs showed higher ALP levels and osteogenic gene expression compared to untreated MSCs. All investigated miRNAs (miR-31, miR-106a and miR148) were consistently downregulated during the process of osteogenic differentiation. After treatment with miRNA inhibitors, ALP activity and osteogenic gene expression increased over the time of osteogenic differentiation. BMP-2 has a positive effect on osteogenic differentiation of chorion- and placenta-derived MSCs. The inhibition of specific miRNAs enhanced the osteogenic differentiation capacity of various MSCs in culture and this strategy might be used to promote bone regeneration. However, further in vivo experiments are required to assess the validity of this approach.


Sign in / Sign up

Export Citation Format

Share Document