Ovarian development of captive F1 wreckfish (hāpuku) Polyprion oxygeneios under constant and varying temperature regimes – Implications for broodstock management

2018 ◽  
Vol 257 ◽  
pp. 86-96 ◽  
Author(s):  
Matthew J. Wylie ◽  
Alvin N. Setiawan ◽  
Glen W. Irvine ◽  
Jane E. Symonds ◽  
Abigail Elizur ◽  
...  
2014 ◽  
Author(s):  
Raffaella Rossetti ◽  
Irene Negri ◽  
Chiara Castronovo ◽  
Palma Finelli ◽  
Luca Persani

Reproduction ◽  
2018 ◽  
Author(s):  
Pacharawan Deenarn ◽  
Punsa Tobwor ◽  
Rungnapa Leelatanawit ◽  
Somjai Wongtriphop ◽  
Jutatip Khudet ◽  
...  

The delay in ovarian maturation in farmed black tiger shrimp Penaeus monodon has resulted in the widespread practice of feeding broodstock with the polychaetes Perinereis nuntia and their unilateral eyestalk ablation. Although this practice alters fatty acid content in shrimp ovaries and hepatopancreas, its effects on fatty acid regulatory genes have yet to be systematically examined. Here, microarray analysis was performed on hepatopancreas and ovary cDNA collected from P. monodon at different ovarian maturation stages, revealing that 72 and 58 genes in fatty acid regulatory pathways were differentially expressed in hepatopancreas and ovaries respectively. Quantitative real-time PCR analysis revealed that ovarian maturation was associated with higher expression levels of acetyl-CoA acetyltransferase, acyl-CoA dehydrogenase, acyl-CoA oxidase 3 and long-chain fatty acid transport protein 4 in hepatopancreas, whereas the expression levels of 15 fatty acid regulatory genes were increased in shrimp ovaries. To distinguish the effects of different treatments, transcriptional changes were examined in P. monodon with stage 1 ovaries before polychaete feeding, after one-month of polychaete feeding and after eyestalk ablation. Polychaete feeding resulted in lower expression levels of enoyl-CoA hydratase and acyl-CoA synthetase medium-chain family member 4, while the expression level of phosphatidylinositide phosphatase SAC1 was higher in shrimp hepatopancreas and ovaries. Additionally, eyestalk ablation resulted in a higher expression level of long-chain fatty acid-CoA ligase 4 in both tissues. Together, our findings describe the dynamics of fatty acid regulatory pathways during crustacean ovarian development and provide potential target genes for alternatives to eyestalk ablation in the future.


2002 ◽  
Vol 7 (1-3) ◽  
pp. d2006 ◽  
Author(s):  
Barbara Vanderhyden

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 392
Author(s):  
Lydia Katsika ◽  
Mario Huesca Flores ◽  
Yannis Kotzamanis ◽  
Alicia Estevez ◽  
Stavros Chatzifotis

This study was conducted to elucidate the interaction effects of temperature and dietary lipid levels (2 × 2 factorial experiment) on the growth performance, muscle, and liver composition in adult farmed European sea bass (Dicentrarchus labrax). Two groups of fish (190 g; 60 fish per group) were distributed in 12 tanks in triplicates and kept at two different temperature regimes; one starting at 23 °C and then changed to 17 °C for 61 days, and the other starting at 17 °C and then changed to 23 °C for 39 days. Two commercial diets containing both ~44% crude protein but incorporating different dietary lipid levels, 16.5% (D16) and 20.0% (D20) (dry matter (DM)), were fed to the fish to apparent satiation; the type of diet fed to each fish group remained constant throughout the experiment. Final body weight, weight gain, and specific growth rate were significantly higher for the fish group held at 23 °C compared to the fish group at 17 °C (before the temperature changes), while the dietary fat content did not have any profound effect in both groups. Furthermore, the different temperature regimes did not affect muscle or liver composition, but, on the contrary, dietary lipids affected hepatosomatic, perivisceral fat, and visceral indexes. Feed conversion ratio and specific growth rate were not affected by the dietary lipid level. An interaction of temperature and dietary lipid content was observed in daily feed consumption (DFC) and final body weight (FBW).


Sign in / Sign up

Export Citation Format

Share Document