AAV9 mediated correction of iduronate-2-sulfatase deficiency in the central nervous system of mucopolysaccharidosis type II mice

2016 ◽  
Vol 117 (2) ◽  
pp. S70
Author(s):  
Kanut Laoharawee ◽  
Kelly M. Podetz-Petersen ◽  
Kelley F. Kitto ◽  
Lucy Vulchanova ◽  
Carolyn A. Fairbanks ◽  
...  
2015 ◽  
Vol 23 ◽  
pp. S146
Author(s):  
Kanut Laoharawee ◽  
Kelly M. Podetz-Pedersen ◽  
Kelley Kitto ◽  
Lucy Vulchanova ◽  
Carolyn Fairbanks ◽  
...  

2017 ◽  
Vol 28 (8) ◽  
pp. 626-638 ◽  
Author(s):  
Kanut Laoharawee ◽  
Kelly M. Podetz-Pedersen ◽  
Tam T. Nguyen ◽  
Laura B. Evenstar ◽  
Kelley F. Kitto ◽  
...  

2019 ◽  
Vol 20 (23) ◽  
pp. 5829 ◽  
Author(s):  
Mitsuyo Maeda ◽  
Toshiyuki Seto ◽  
Chiho Kadono ◽  
Hideto Morimoto ◽  
Sachiho Kida ◽  
...  

Mucopolysaccharidosis type II (MPS II) is a rare lysosomal storage disease (LSD) involving a genetic error in iduronic acid-2-sulfatase (IDS) metabolism that leads to accumulation of glycosaminoglycans within intracellular lysosomes. The primary treatment for MPS II, enzyme replacement therapy, is not effective for central nervous system (CNS) symptoms, such as intellectual disability, because the drugs do not cross the blood–brain barrier. Recently, autophagy has been associated with LSDs. In this study, we examined the morphologic relationship between neuronal damage and autophagy in IDS knockout mice using antibodies against subunit c of mitochondrial adenosine triphosphate (ATP) synthetase and p62. Immunohistological changes suggesting autophagy, such as vacuolation, were observed in neurons, microglia, and pericytes throughout the CNS, and the numbers increased over postnatal development. Oral administration of chloroquine, which inhibits autophagy, did not suppress damage to microglia and pericytes, but greatly reduced neuronal vacuolation and eliminated neuronal cells with abnormal inclusions. Thus, decreasing autophagy appears to prevent neuronal degeneration. These results suggest that an autophagy modulator could be used in addition to conventional enzyme replacement therapy to preserve the CNS in patients with MPS II.


2010 ◽  
Vol 79 (3) ◽  
pp. 1363-1373 ◽  
Author(s):  
Jianchun Xiao ◽  
Lorraine Jones-Brando ◽  
C. Conover Talbot ◽  
Robert H. Yolken

ABSTRACTStrain type is one of the key factors suspected to play a role in determining the outcome ofToxoplasmainfection. In this study, we examined the transcriptional profile of human neuroepithelioma cells in response to representative strains ofToxoplasmaby using microarray analysis to characterize the strain-specific host cell response. The study of neural cells is of interest in light of the ability ofToxoplasmato infect the brain and to establish persistent infection within the central nervous system. We found that the extents of the expression changes varied considerably among the three strains. Neuroepithelial cells infected withToxoplasmatype I exhibited the highest level of differential gene expression, whereas type II-infected cells had a substantially smaller number of genes which were differentially expressed. Cells infected with type III exhibited intermediate effects on gene expression. The three strains also differed in the individual genes and gene pathways which were altered following cellular infection. For example, gene ontology (GO) analysis indicated that type I infection largely affects genes related to the central nervous system, while type III infection largely alters genes which affect nucleotide metabolism; type II infection does not alter the expression of a clearly defined set of genes. Moreover, Ingenuity Pathways Analysis (IPA) suggests that the three lineages differ in the ability to manipulate their host; e.g., they employ different strategies to avoid, deflect, or subvert host defense mechanisms. These observed differences may explain some of the variation in the neurobiological effects of different strains ofToxoplasmaon infected individuals.


Sign in / Sign up

Export Citation Format

Share Document