Poor performance of DNA barcoding and the impact of RAD loci filtering on the species delimitation of an Iberian ant-eating spider

2021 ◽  
Vol 154 ◽  
pp. 106997
Author(s):  
David Ortiz ◽  
Stano Pekár ◽  
Julia Bilat ◽  
Nadir Alvarez
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarv Priya ◽  
Tanya Aggarwal ◽  
Caitlin Ward ◽  
Girish Bathla ◽  
Mathews Jacob ◽  
...  

AbstractSide experiments are performed on radiomics models to improve their reproducibility. We measure the impact of myocardial masks, radiomic side experiments and data augmentation for information transfer (DAFIT) approach to differentiate patients with and without pulmonary hypertension (PH) using cardiac MRI (CMRI) derived radiomics. Feature extraction was performed from the left ventricle (LV) and right ventricle (RV) myocardial masks using CMRI in 82 patients (42 PH and 40 controls). Various side study experiments were evaluated: Original data without and with intraclass correlation (ICC) feature-filtering and DAFIT approach (without and with ICC feature-filtering). Multiple machine learning and feature selection strategies were evaluated. Primary analysis included all PH patients with subgroup analysis including PH patients with preserved LVEF (≥ 50%). For both primary and subgroup analysis, DAFIT approach without feature-filtering was the highest performer (AUC 0.957–0.958). ICC approaches showed poor performance compared to DAFIT approach. The performance of combined LV and RV masks was superior to individual masks alone. There was variation in top performing models across all approaches (AUC 0.862–0.958). DAFIT approach with features from combined LV and RV masks provide superior performance with poor performance of feature filtering approaches. Model performance varies based upon the feature selection and model combination.


2016 ◽  
Vol 10 (4) ◽  
pp. 303-309 ◽  
Author(s):  
Maira Rozenfeld Olchik ◽  
Annelise Ayres ◽  
Marcieli Ghisi ◽  
Artur Francisco Schumacher Schuh ◽  
Carlos Roberto Mello Rieder

ABSTRACT Background: Evidence points to the occurrence of cognitive impairment in all stages of PD, constituting a frequent and debilitating symptom, due to high impact on quality of life and mortality of patients. Objective: To correlate cognitive performance with quality of life in PD. Methods: The sample was drawn from a Movement Disorders Clinic of a reference hospital in Porto Alegre. Inclusion criteria were: PD diagnosis, according to the United Kingdom Parkinson's Disease Society Brain Bank criteria for idiopathic PD (Hughes et al. 1992) and patient consent to participate. Patients with other neurological pathologies and those submitted to deep brain stimulation were excluded. The evaluation consisted of a cognitive testing battery (composed of eight tests for assessing cognitive performance), and a questionnaire on quality of life (PDQ-39) and depression (BDI). Results: The sample comprised 85 individuals with PD, with a mean age of 62.9 years (±10.7), mean disease duration of 10.4 years (±5.7), and mean educational level of four years (±4.3). There was a significant relationship between total score on the PDQ and all cognitive tests, showing that poor cognitive performance was correlated with poor quality of life. Moreover, a significant correlation was observed between cognitive tests and depression, H&Y, education level, and age. Conclusion: It may be concluded that the individuals with PD in this sample showed a correlation between poorer quality of life and worse cognitive performance. Poor performance was also correlated with more advanced stage, older age, low level of education and depression.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259982
Author(s):  
Eline D’Haene ◽  
Senne Vandevelde ◽  
Bart Minten

The impact of food taboos–often because of religion–is understudied. In Ethiopia, religious fasting by Orthodox Christians is assumed to be an important impediment for the sustainable development of a competitive dairy sector and desired higher milk consumption, especially by children. However, evidence is limited. Relying on unique data, we shed light on three major issues. First, we observe that the average annual number of fasting days that Orthodox adults are effectively adhering to is 140, less than commonly cited averages. Using this as an estimate for extrapolation, fasting is estimated to reduce annual dairy consumption by approximately 12 percent nationally. Second, farms adapt to declining milk demand during fasting by increased processing of milk into storable products–fasting contributes to larger price swings for these products. We further note continued sales of milk by non-remote farmers and reduced production–by adjusting lactation times for dairy animals–for remote farmers. Third, fasting is mostly associated with increased milk consumption by the children of dairy farmers, seemingly because of excess milk availability during fasting periods. Our results suggest that fasting habits are not a major explanation for the observed poor performance of Ethiopia’s dairy sector nor low milk consumption by children. To reduce the impact of fasting on the dairy sector in Ethiopia further, investment is called for in improved milk processing, storage, and infrastructure facilities.


2020 ◽  
Vol 642 ◽  
pp. A157 ◽  
Author(s):  
N. Meunier ◽  
A.-M. Lagrange

Context. The detectability of exoplanets and the determination of their projected mass in radial velocity are affected by stellar magnetic activity and photospheric dynamics. Among those processes, the effect of granulation, and even more so of supergranulation, has been shown to be significant in the solar case. The impact for other spectral types has not yet been characterised. Aims. Our study is aimed at quantifying the impact of these flows for other stars and estimating how such contributions affect their performance. Methods. We analysed a broad array of extended synthetic time series that model these processes to characterise the impact of these flows on exoplanet detection for main sequence stars with spectral types from F6 to K4. We focussed on Earth-mass planets orbiting within the habitable zone around those stars. We estimated the expected detection rates and detection limits, tested the tools that are typically applied to such observations, and performed blind tests. Results. We find that both granulation and supergranulation on these stars significantly affect planet mass characterisation in radial velocity when performing a follow-up of a transit detection: the uncertainties on these masses are sometimes below 20% for a 1 MEarth (for granulation alone or for low-mass stars), but they are much larger in other configurations (supergranulation, high-mass stars). For granulation and low levels of supergranulation, the detection rates are good for K and late G stars (if the number of points is large enough), but poor for more massive stars. The highest level of supergranulation leads to a very poor performance, even for K stars; this is both due to low detection rates and to high levels of false positives, even for a very dense temporal sampling over 10 yr. False positive levels estimated from standard false alarm probabilities sometimes significantly overestimate or underestimate the true level, depending on the number of points: it is, therefore, crucial to take this effect into account when analysing observations. Conclusions. We conclude that granulation and supergranulation significantly affect the performance of exoplanet detectability. Future works will focus on improving the following three aspects: decreasing the number of false positives, increasing detection rates, and improving the false alarm probability estimations from observations.


2019 ◽  
Author(s):  
◽  
Morgan Gueuning

Wild bees are essential pollinators and therefore play a key role in both natural and agricultural ecosystems. However, bees have often been neglected in conservation studies and policies worldwide, which is surprising given their ecological importance. As a result, little is known on the conservation status of the vast majority of wild bee species in Europe, and even less worldwide. Limited surveys suggest important declines in the abundance and diversity of most wild bee communities worldwide. It is therefore urgent to implement targeted measures for the conservation of these keystone species. Once implemented, the effectiveness of these measures must be evaluated using adequate monitoring programs. To date, wild bee surveys are entirely based on morphological identification, which is both labor intensive and time consuming. Consequently, an affordable, high-throughput identification method is needed to reduce costs and improve bee monitoring. The objective of this thesis was to evaluate novel genetic techniques based on Next Generation Sequencing (NGS) methods for facilitating surveys of wild bees. NGS tools were mainly investigated for bridging two important impediments to wild bee conservation efforts, i.e., the cost of biodiversity assessment schemes and taxonomic incompleteness. With the development of NGS techniques, DNA barcoding has gained enormous momentum, enabling cost-effective, fast and accurate identifications. Before these methods can be routinely used in monitoring programs, there are however still important knowledge gaps to fill. These gaps mainly concern the detection of rare species and the acquisition of accurate quantitative data on species abundance; more generally the cost and labour effectiveness of these methods need to be evaluated. To provide a comprehensive presentation of the advantages and weaknesses of different NGS-based identification methods, we assessed three of the most promising ones, namely metabarcoding, mitogenomics and NGS barcoding. Using a regular monitoring data, we found that NGS barcoding performed best for both species’ presence/absence and abundance data, producing only few false positives and no false negatives. The other methods investigated were less reliable in term of species detection and inference of abundance data, and partly led to erroneous ecological conclusions. In terms of workload and cost, we showed that NGS techniques were more expensive than morphological identification with our dataset, although these techniques would become slightly more economical in large-scale monitoring programs. A second aim of this thesis was to provide an easy and robust genomic solution to alleviate taxonomical incompleteness, one of the major impediments to the effective conservation of many insect taxa. For conservation purposes, having stable and well-delimited species hypotheses is essential. Currently, most species are delimitated based on morphology and/or DNA barcoding. These methods are however associated with important limitations, and it is widely accepted that species delimitation should rely on multi-locus genomic markers. To overcome these limitations, ultraconserved elements (UCEs) were tested as a fast and robust approach using different species-complexes harbouring cryptic diversity, mitochondrial introgression, or mitochondrial paraphyly. Phylogenetic analyses of UCEs were highly conclusive and yielded meaningful species delimitation hypotheses in all cases. These results provide strong evidence for the potential of UCEs as a fast method for delimiting species even in cases of recently diverged lineages. Advantages and limitations of UCEs for shallow phylogenetic studies are further discussed.


Author(s):  
Syed Nihas ◽  
Kristen Barlish ◽  
Jacob Kashiwagi ◽  
Dean Kashiwagi

The Indian construction industry has been characterized by poor performance. This paper analyzes the potential impact of the Indian culture on the poor performance. If the culture is a major cause in the construction industry subpar performance, can the cultural influence be overridden to minimize construction project delays and cost overruns. The authors propose to identify the  unique cultural issues, identify using the Construction Industry Structure (CIS) model the impact of the cultural issues on the construction industry, and identify a potential solution to the problem. The paper proposes to test the solution in actual tests with industry participants. What makes this research unique is the approach of using deductive logic to create a simple solution, and then convincing a major research client to test the proposal.


Author(s):  
Daniel Lukic ◽  
Jonas Eberle ◽  
Jana Thormann ◽  
Carolus Holzschuh ◽  
Dirk Ahrens

DNA-barcoding and DNA-based species delimitation are major tools in DNA taxonomy. Sampling has been a central debate in this context, because the geographical composition of samples affect the accuracy and performance of DNA-barcoding. Performance of complex DNA-based species delimitation is to be tested under simpler conditions in absence of geographic sampling bias. Here, we present an empirical data set sampled from a single locality in a Southeast-Asian biodiversity hotspot (Laos: Phou Pan mountain). We investigate the performance of various species delimitation approaches on a megadiverse assemblage of herbivore chafer beetles (Coleoptera: Scarabaeidae) to infer whether species delimitation suffers in the same way from exaggerate infraspecific variation despite the lack of geographic genetic variation that led to inconsistencies between entities from DNA-based and morphology-based species inference in previous studies. For this purpose, a 658 bp fragment of the mitochondrial cytochrome c oxidase subunit 1 (cox1) was analysed for a total of 186 individuals of 56 morphospecies. Tree based and distance based species delimitation methods were used. All approaches showed a rather limited match ratio (max. 77%) with morphospecies. PTP and TCS prevailingly over-splitted morphospecies, while 3% clustering and ABGD also lumped several species into one entity. ABGD revealed the highest congruence between molecular operational taxonomic units (MOTUs) and morphospecies. Disagreements between morphospecies and MOTUs were discussed in the context of historically acquired geographic genetic differentiation, incomplete lineage sorting, and hybridization. The study once again highlights how important morphology still is in order to correctly interpret the results of molecular species delimitation.


Zootaxa ◽  
2016 ◽  
Vol 4079 (5) ◽  
pp. 534 ◽  
Author(s):  
CHAO SONG ◽  
QIAN WANG ◽  
RUILEI ZHANG ◽  
BINGJIAO SUN ◽  
XINHUA WANG

2013 ◽  
pp. n/a-n/a ◽  
Author(s):  
Raquel Pino-Bodas ◽  
María P. Martín ◽  
Ana R. Burgaz ◽  
H. Thorsten Lumbsch

Sign in / Sign up

Export Citation Format

Share Document