Nonlinear modal interactions in a beam-mass system tuned to 3:1 and combination internal resonances based on correspondence between MTS and NSI methods

2022 ◽  
Vol 164 ◽  
pp. 108221
Author(s):  
Saeed Lotfan
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ata Keşkekler ◽  
Oriel Shoshani ◽  
Martin Lee ◽  
Herre S. J. van der Zant ◽  
Peter G. Steeneken ◽  
...  

AbstractMechanical sources of nonlinear damping play a central role in modern physics, from solid-state physics to thermodynamics. The microscopic theory of mechanical dissipation suggests that nonlinear damping of a resonant mode can be strongly enhanced when it is coupled to a vibration mode that is close to twice its resonance frequency. To date, no experimental evidence of this enhancement has been realized. In this letter, we experimentally show that nanoresonators driven into parametric-direct internal resonance provide supporting evidence for the microscopic theory of nonlinear dissipation. By regulating the drive level, we tune the parametric resonance of a graphene nanodrum over a range of 40–70 MHz to reach successive two-to-one internal resonances, leading to a nearly two-fold increase of the nonlinear damping. Our study opens up a route towards utilizing modal interactions and parametric resonance to realize resonators with engineered nonlinear dissipation over wide frequency range.


1995 ◽  
Vol 117 (4) ◽  
pp. 385-391 ◽  
Author(s):  
C. L. Lee ◽  
N. C. Perkins

The near resonant response of suspended elastic cables driven by harmonic, planar excitation is investigated experimentally. Measurements of large amplitude cable motions confirm previous theoretical predictions of fundamental classes of internally-resonant responses. For particular magnitudes of equilibrium curvature, strong modal interactions arise through isolated (two-mode) or simultaneous (three-mode) internal resonances. Four qualitatively different periodic responses are observed: (1) pure planar response, (2) 2:1 internally resonant nonplanar response, (3) 1:1 internally resonant nonplanar response, and (4) simultaneous, 2:2:1 internally resonant nonplanar response. Quasiperiodic responses are also observed.


2013 ◽  
Vol 80 (6) ◽  
Author(s):  
Lianhua Wang ◽  
Jianjun Ma ◽  
Minghui Yang ◽  
Lifeng Li ◽  
Yueyu Zhao

The modal interactions and nonlinear responses of inextensional beams resting on elastic foundations with two-to-one internal resonances are investigated and the primary resonance excitations are considered. The multimode discretization and the method of multiple scales are applied to obtain the modulation equations. The equilibrium and dynamic solutions of the modulation equations are examined by the Newton–Raphson, shooting, and continuation methods. Numerical simulations are performed to investigate the chaotic dynamics of the beam. It is shown that the nonlinear responses may undergo different bifurcations and exhibit rich nonlinear phenomena. Finally, the effects of the foundation models on the nonlinear interactions of the beam are examined.


Author(s):  
Astitva Tripathi ◽  
Anil K. Bajaj

Nonlinear phenomena such as internal resonances have significant potential applications in Micro Electro Mechanical Systems (MEMS) for increasing the sensitivity of biological and chemical sensors and signal processing elements in circuits. While several theoretical systems are known which exhibit 1:2 or 1:3 internal resonances, designing systems that have the desired properties required for internal resonance as well as are physically realizable as MEMS devices is a significant challenge. Traditionally, the design process for obtaining resonant structures exhibiting an internal resonance has relied heavily on the designer’s prior knowledge and experience. However, with advances in computing power and topology optimization techniques, it should be possible to synthesize structures with the required nonlinear properties (such as having modal interactions) computationally. In this work, a preliminary method for computer based synthesis of structures consisting of beams for desired internal resonance is presented. The linear structural design is accompalished by a Finite Element Method (FEM) formulation implemented in Matlab to start with a base structure and iteratively modify it to obtain a structure with the desired properties. Possible design criteria are having the first two natural frequencies of the structure in some required ratio (such as 1:2 or 1:3). Once a topology of the structure is achieved that meets the desired criterion (i.e., the program converges to a definite structure), the linear mode shapes of the structure can be extracted from the finite element analysis, and a more complete Lagrangian formulation of the nonlinear elastic structure can be used to develop a nonlinear two-mode model of the structure. The reduced-order model is expected to capture the appropriate resonant dynamics associated with modal interactions between the two modes. The nonlinear response of the structure can be obtained by application of perturbation methods such as averaging on the two-mode model. Many candidate structures are synthesized that meet the desired modal frequency criterion and their nonlinear responses are compared.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Lianhua Wang ◽  
Yueyu Zhao ◽  
Giuseppe Rega

The large amplitude vibration and modal interactions of shallow suspended cable with three-to-three-to-one internal resonances are investigated. The quasistatic assumption and direct approach are used to obtain the condensed suspended cable model and the corresponding modulation equations for the case of primary resonance of the third symmetric in-plane or out-of-plane mode. The equilibrium, periodic, and chaotic solutions of the modulation equations are studied. Moreover, the nonplanar motion and symmetric character of out-of-plane vibration of the shallow suspended cables are investigated by means of numerical simulations. Finally, the role played by the quasistatic assumption, internal resonance, and static configuration in disrupting the symmetry of the out-of-plane vibration is discussed.


Author(s):  
Christopher L. Lee ◽  
Noel C. Perkins

Abstract The near resonant response of suspended elastic cables driven by harmonic, planar excitation is investigated experimentally. Measurements of large amplitude cable motions confirm previous theoretical predictions of fundamental classes of internally-resonant responses. For particular magnitudes of equilibrium curvature, strong modal interactions arise through isolated (two-mode) or simultaneous (three-mode) internal resonances. Four qualitatively different periodic responses are observed: 1) pure planar response, 2) 2:1 internally resonant non-planar response 3) 1:1 internally resonant non-planar response, and 4) simultaneous, 2:2:1 internally resonant non-planar response. Quasi-periodic responses are also observed.


Author(s):  
Evangelia Nicolaidou ◽  
Thomas L. Hill ◽  
Simon A. Neild

Model order reduction of geometrically nonlinear dynamic structures is often achieved via a static condensation procedure, whereby high-frequency modes are assumed to be quasi-statically coupled to a small set of lower frequency modes, which form the reduction basis. This approach is mathematically justifiable for structures characterized by slow/fast dynamics, such as thin plates and slender beams, and has been shown to provide highly accurate results. Nevertheless, selecting the reduction basis without a priori knowledge of the full-order dynamics is a challenging task; retaining redundant modes will lead to computationally suboptimal reduced-order models (ROMs), while omitting dynamically significant modes will lead to inaccurate results, and important features such as internal resonances may not be captured. In this study, we demonstrate how the error associated with static condensation can be efficiently approximated during model reduction. This approximate error can then be used as the basis of a method for predicting when dynamic modal interactions will occur, which will guide the reduction basis selection process. Equivalently, this may serve as a tool for verifying the accuracy of ROMs without the need for full-order simulations. The proposed method is demonstrated using a simple oscillator and a finite element model of a clamped–clamped beam.


Sign in / Sign up

Export Citation Format

Share Document