Dynamic characteristics of an aeroengine dual-rotor system with inter-shaft rub-impact

2022 ◽  
Vol 166 ◽  
pp. 108475
Author(s):  
Pingchao Yu ◽  
Cun Wang ◽  
Li Hou ◽  
Guo Chen
2021 ◽  
Vol 12 (1) ◽  
pp. 677-688
Author(s):  
Xinran Wang ◽  
Wen Li ◽  
Dongxu Hu ◽  
Xingjian Dai ◽  
Haisheng Chen

Abstract. The tooth surface friction effects and the resulting tooth surface contact temperature are important factors for the dynamic characteristics of a gear-rotor system in compressed air energy storage (CAES). Therefore, a 3∘ of freedom finite-element model of the system is set up in which the lubrication state of the gear pair, tooth surface friction, contact temperature of the tooth surface, backlash and unbalanced excitation are considered. The friction coefficient is calculated according to the variation of the lubrication state, and the tooth surface contact temperature is derived based on the friction coefficient. The tooth profile deformation caused by the change in the contact temperature is calculated, and the resulting effects on backlash and comprehensive meshing stiffness are considered. The influence of rotating speed, torque load and viscosity of lubricating oil on the system response is studied, and the variation of the friction coefficient, flash temperature of the tooth surface, pressure of the tooth surface and so on are discussed in detail. The results indicate that when the friction coefficient is derived according to the variation of the lubrication state, the variation of the contact temperature of the tooth surface with rotating speed is quite different from that calculated based on a friction coefficient which is set artificially. This leads to a new variation of the dynamic response of the gear-rotor system, and the method of stabilizing the operation of the system is put forward based on the optimization curve for the operation of the system. The results obtained in this paper will provide a reference for the study and design of a gear-rotor system in CAES.


Author(s):  
Xi Chen ◽  
Xiaohua Gan ◽  
Guangming Ren

During aircraft maneuvering flights, engine's rotor-bearing systems are subjected to parametric excitations and additional inertial forces, which may cause severe vibration and abnormal operation. Based on Lagrange's principle combined with finite element modeling, the differential equations of motion for a squeeze film damped rotor-bearing system mounted on an aircraft in maneuvering flight are derived. Using Newmark–Hilber–Hughes–Taylor integration method, dynamic characteristics of the nonlinear rotor system under maneuvering flight are investigated. The factors are considered, involving mass unbalance, oil–film force, gravity, parametric excitations and additional inertial forces, and instantaneous static eccentricity of journal induced by maneuvering loads. The effects of forward velocity, radius of curvature, rotating speed, mass unbalance, oil–film clearance, and elastic support stiffness on transient responses of rotor system are discussed during diving–climbing maneuver. The results indicate that when the aircraft performs a diving–climbing maneuver in the vertical plane, the journal deviates from the center of oil–film outer ring, and the excursion direction of whirl orbit is determined by centrifugal acceleration and additional gyroscopic moment. The journal whirls asynchronously around the instantaneous static eccentricity and its magnitude is related to the maneuvering loads and the supporting stiffness. Increasing forward velocity or decreasing pitching radius, the rotor vibration will enter earlier into or withdraw later from the relatively large eccentricity. Rotating near critical speeds or excessive mass unbalances should be prevented during maneuvering flights. For large maneuver, the oil–film radial clearance needs to be enlarged properly to avoid hard contact between journal and outer ring. In addition, the stiffness of elastic support needs to be appropriately determined for damping performance. Overall, it provides a flexible approach with good expandability to predict dynamic characteristics of on-board squeeze-film damped rotor system during maneuvering flights in the design process.


Author(s):  
YF Shi ◽  
M Li ◽  
GH Zhu ◽  
Y Yu

Dynamic behaviour is significantly important in the design of large rotor systems supported on water-lubricated rubber bearings. In this study, the mathematical model of elastohydrodynamic lubrication of the bearing is established based on the theory of hydrodynamic lubrication after considering the elastic deformation of rubber, and the dynamic characteristics of water-lubricated rubber bearings are analysed under small perturbation conditions according to the load increment method and the finite difference method. Next, the differential equation of rotor systems coupled with the water-lubricated rubber bearing is deduced using Lagrange’s approach, and its critical speeds, stability, and unbalanced responses are analysed in detail. The numerical results show that several parameters, such as the eccentricity, length–diameter ratio, and clearance of bearing and the rotating speed of the rotor, have a great impact on the dynamic performance of water-lubricated rubber bearings, and this influence cannot be ignored, especially in the case of large eccentricity ratios. The dynamic characteristics of rotor systems guided by water-lubricated rubber bearings reveal that the critical speeds are much lower than the ones under the rigid supports because of the elastic deformation, and they also indicate that the rotor system supported on water-lubricated rubber bearings has a weaker stability. In addition, the steady-state responses of the rotor system are analysed when the mass unbalance of the propeller exists, and the effect of the thickness of the rubber liner is also considered.


Sign in / Sign up

Export Citation Format

Share Document