scholarly journals Functional connectivity associated with individual differences on the emotional attentional blink task

2021 ◽  
Vol 1 (4) ◽  
pp. 100065
Author(s):  
Stephen D. Smith ◽  
Jennifer Kornelsen
PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0156538 ◽  
Author(s):  
Charlotte Willems ◽  
Jefta D. Saija ◽  
Elkan G. Akyürek ◽  
Sander Martens

2020 ◽  
Vol 30 (12) ◽  
pp. 6224-6237
Author(s):  
Liqin Zhou ◽  
Zonglei Zhen ◽  
Jia Liu ◽  
Ke Zhou

Abstract The attentional blink (AB) has been central in characterizing the limit of temporal attention and consciousness. The neural mechanism of the AB is still in hot debate. With a large sample size, we combined multiple behavioral tests, multimodal MRI measures, and transcranial magnetic stimulation to investigate the neural basis underlying the individual differences in the AB. We found that AB magnitude correlated with the executive control functioning of working memory (WM) in behavior, which was fully mediated by T1 performance. Structural variations in the right temporoparietal junction (rTPJ) and its intrinsic functional connectivity with the left inferior frontal junction (lIFJ) accounted for the individual differences in the AB, which was moderated by the executive control of working memory. Disrupting the function of the lIFJ attenuated the AB deficit. Our findings clarified the neural correlates of the individual differences in the AB and elucidated its relationship with the consolidation-driven inhibitory control process.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Michael C. W. English ◽  
Murray T. Maybery ◽  
Troy A. W. Visser

AbstractAlthough autistic and anxious traits are positively correlated, high levels of autistic traits are associated with poorer emotional guidance of attention (EGA) whilst high levels of anxious traits are associated with greater EGA. In order to better understand how these two trait dimensions influence EGA, we simultaneously examined the effects of anxiety and autistic traits in neurotypical adults on target identification in an attentional blink task. Analyses indicated that implicit EGA is attenuated in individuals with higher levels of autistic traits, but largely unaffected by variation in anxious traits. Our results suggest that anxiety plays a comparatively limited role in modulating implicit EGA and reinforces the importance of disentangling correlated individual differences when exploring the effects of personality, including emotional predisposition, on attention.


2019 ◽  
Author(s):  
Paola Perone ◽  
David Vaughn Becker ◽  
Joshua M. Tybur

Multiple studies report that disgust-eliciting stimuli are perceived as salient and subsequently capture selective attention. In the current study, we aimed to better understand the nature of temporal attentional biases toward disgust-eliciting stimuli and to investigate the extent to which these biases are sensitive to contextual and trait-level pathogen avoidance motives. Participants (N=116) performed in an Emotional Attentional Blink (EAB) task in which task-irrelevant disgust-eliciting, fear-eliciting, or neutral images preceded a target by 200, 500, or 800 milliseconds (i.e., lag two, five and eight respectively). They did so twice - once while not exposed to an odor, and once while exposed to either an odor that elicited disgust or an odor that did not - and completed a measure of disgust sensitivity. Results indicate that disgust-eliciting visual stimuli produced a greater attentional blink than neutral visual stimuli at lag two and a greater attentional blink than fear-eliciting visual stimuli at both lag two and at lag five. Neither the odor manipulations nor individual differences measures moderated this effect. We propose that visual attention is engaged for a longer period of time following disgust-eliciting stimuli because covert processes automatically initiate the evaluation of pathogen threats. The fact that state and trait pathogen avoidance do not influence this temporal attentional bias suggests that early attentional processing of pathogen cues is initiated independent from the context in which such cues are perceived.


2019 ◽  
Author(s):  
John D. Lewis ◽  
Gleb Bezgin ◽  
Vladimir S. Fonov ◽  
D. Louis Collins ◽  
Alan C. Evans

AbstractBoth the cortex and the subcortical structures are organized into a large number of distinct areas reflecting functional and cytoarchitectonic differences. Mapping these areas is of fundamental importance to neuroscience. A central obstacle to this task is the inaccuracy associated with mapping results from individuals into a common space. The vast individual differences in morphology pose a serious problem for volumetric registration. Surface-based approaches fare substantially better, but have thus far been used only for cortical parcellation. We extend this surface-based approach to include also the subcortical deep gray-matter structures. Using the life-span data from the Enhanced Nathan Klein Institute - Rockland Sample, comprised of data from 590 individuals from 6 to 85 years of age, we generate a functional parcellation of both the cortical and subcortical surfaces. To assess this extended parcellation, we show that our extended functional parcellation provides greater homogeneity of functional connectivity patterns than do arbitrary parcellations matching in the number and size of parcels. We also show that our subcortical parcels align with known subnuclei. Further, we show that this parcellation is appropriate for use with data from other modalities; we generate cortical and subcortical white/gray contrast measures for this same dataset, and draw on the fact that areal differences are evident in the relation of white/gray contrast to age, to sex, to brain volume, and to interactions of these terms; we show that our extended functional parcellation provides an improved fit to the complexity of the life-span changes in the white/gray contrast data compared to arbitrary parcellations matching in the number and size of parcels. We provide our extended functional parcellation for the use of the neuroimaging community.


NeuroImage ◽  
2018 ◽  
Vol 166 ◽  
pp. 110-116 ◽  
Author(s):  
Leonie Brinkmann ◽  
Christine Buff ◽  
Katharina Feldker ◽  
Paula Neumeister ◽  
Carina Y. Heitmann ◽  
...  

Author(s):  
Uzma Nawaz ◽  
Ivy Lee ◽  
Adam Beermann ◽  
Shaun Eack ◽  
Matcheri Keshavan ◽  
...  

Abstract Resting-state fMRI (rsfMRI) demonstrates that the brain is organized into distributed networks. Numerous studies have examined links between psychiatric symptomatology and network functional connectivity. Traditional rsfMRI analyses assume that the spatial organization of networks is invariant between individuals. This dogma has recently been overturned by the demonstration that networks show significant variation between individuals. We tested the hypothesis that previously observed relationships between schizophrenia-negative symptom severity and network connectivity are actually due to individual differences in network spatial organization. Forty-four participants diagnosed with schizophrenia underwent rsfMRI scans and clinical assessments. A multivariate pattern analysis determined how whole-brain functional connectivity correlates with negative symptom severity at the individual voxel level. Brain connectivity to a region of the right dorsolateral prefrontal cortex correlates with negative symptom severity. This finding results from individual differences in the topographic distribution of 2 networks: the default mode network (DMN) and the task-positive network (TPN). Both networks demonstrate strong (r = ~0.49) and significant (P < .001) relationships between topography and symptom severity. For individuals with low symptom severity, this critical region is part of the DMN. In highly symptomatic individuals, this region is part of the TPN. Previously overlooked individual variation in brain organization is tightly linked to differences in schizophrenia symptom severity. Recognizing critical links between network topography and pathological symptomology may identify key circuits that underlie cognitive and behavioral phenotypes. Individual variation in network topography likely guides different responses to clinical interventions that rely on anatomical targeting (eg, transcranial magnetic stimulation [TMS]).


Sign in / Sign up

Export Citation Format

Share Document